Instances of AdmissibleAbsValues #
We provide instances of Height.AdmissibleAbsValues for
- algebraic number fields.
TODO #
Fields of rational functions in
nvariables.Finite extensions of fields with
Height.AdmissibleAbsValues.
Instance for number fields #
noncomputable def
NumberField.multisetInfinitePlace
(K : Type u_1)
[Field K]
[NumberField K]
:
Multiset (AbsoluteValue K ℝ)
The infinite places of a number field K as a Multiset of absolute values on K,
with multiplicity given by InfinitePlace.mult.
Equations
- NumberField.multisetInfinitePlace K = Finset.univ.val.bind fun (v : NumberField.InfinitePlace K) => Multiset.replicate v.mult ↑v
Instances For
@[simp]
theorem
NumberField.mem_multisetInfinitePlace
{K : Type u_1}
[Field K]
[NumberField K]
{v : AbsoluteValue K ℝ}
:
theorem
NumberField.count_multisetInfinitePlace_eq_mult
{K : Type u_1}
[Field K]
[NumberField K]
[DecidableEq (AbsoluteValue K ℝ)]
(v : InfinitePlace K)
:
noncomputable instance
NumberField.instAdmissibleAbsValues
{K : Type u_1}
[Field K]
[NumberField K]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
NumberField.prod_archAbsVal_eq
{K : Type u_1}
[Field K]
[NumberField K]
{M : Type u_2}
[CommMonoid M]
(f : AbsoluteValue K ℝ → M)
:
theorem
NumberField.prod_nonarchAbsVal_eq
{K : Type u_1}
[Field K]
[NumberField K]
{M : Type u_2}
[CommMonoid M]
(f : AbsoluteValue K ℝ → M)
:
theorem
NumberField.mulHeight₁_eq
{K : Type u_1}
[Field K]
[NumberField K]
(x : K)
:
Height.mulHeight₁ x = (∏ v : InfinitePlace K, max (v x) 1 ^ v.mult) * ∏ᶠ (v : FinitePlace K), max (v x) 1
This is the familiar definition of the multiplicative height on a number field.