Documentation

Mathlib.NumberTheory.NumberField.FinitePlaces

Finite places of number fields #

This file defines finite places of a number field K as absolute values coming from an embedding into a completion of K associated to a non-zero prime ideal of š“ž K.

Main Definitions and Results #

Tags #

number field, places, finite places

theorem NumberField.one_lt_norm {K : Type u_1} [Field K] [NumberField K] (v : IsDedekindDomain.HeightOneSpectrum (RingOfIntegers K)) :
1 < ā†‘(Ideal.absNorm v.asIdeal)

The norm of a maximal ideal as an element of ā„ā‰„0 is > 1

The v-adic absolute value on K defined as the norm of v raised to negative v-adic valuation.

Equations
Instances For
    theorem NumberField.vadicAbv_def {K : Type u_1} [Field K] [NumberField K] (v : IsDedekindDomain.HeightOneSpectrum (RingOfIntegers K)) {x : K} :
    (vadicAbv v) x = ā†‘((WithZeroMulInt.toNNReal ā‹Æ) (v.valuation x))

    The embedding of a number field inside its completion with respect to v.

    Equations
    Instances For
      Equations

      A finite place of a number field K is a place associated to an embedding into a completion with respect to a maximal ideal.

      Equations
      Instances For

        Return the finite place defined by a maximal ideal v.

        Equations
        Instances For

          The norm of the image after the embedding associated to v is equal to the v-adic absolute value.

          The norm of the image after the embedding associated to v is equal to the norm of v raised to the power of the v-adic valuation.

          The norm of the image after the embedding associated to v is equal to the norm of v raised to the power of the v-adic valuation for integers.

          The v-adic norm of an integer is at most 1.

          The v-adic norm of an integer is 1 if and only if it is not in the ideal.

          The v-adic norm of an integer is less than 1 if and only if it is in the ideal.

          Equations

          For a finite place w, return a maximal ideal v such that w = finite_place v .

          Equations
          • w.maximalIdeal = ā‹Æ.choose
          Instances For
            @[simp]
            theorem NumberField.FinitePlace.mk_maximalIdeal {K : Type u_1} [Field K] [NumberField K] (w : FinitePlace K) :
            mk w.maximalIdeal = w
            @[simp]
            theorem NumberField.FinitePlace.norm_embedding_eq {K : Type u_1} [Field K] [NumberField K] (w : FinitePlace K) (x : K) :
            ā€–(embedding w.maximalIdeal) xā€– = w x
            theorem NumberField.FinitePlace.pos_iff {K : Type u_1} [Field K] [NumberField K] {w : FinitePlace K} {x : K} :
            0 < w x ā†” x ā‰  0
            @[simp]
            theorem NumberField.FinitePlace.mk_eq_iff {K : Type u_1} [Field K] [NumberField K] {vā‚ vā‚‚ : IsDedekindDomain.HeightOneSpectrum (RingOfIntegers K)} :
            mk vā‚ = mk vā‚‚ ā†” vā‚ = vā‚‚

            The equivalence between finite places and maximal ideals.

            Equations
            Instances For
              theorem NumberField.FinitePlace.maximalIdeal_inj {K : Type u_1} [Field K] [NumberField K] (wā‚ wā‚‚ : FinitePlace K) :
              wā‚.maximalIdeal = wā‚‚.maximalIdeal ā†” wā‚ = wā‚‚
              theorem NumberField.FinitePlace.mulSupport_finite_int {K : Type u_1} [Field K] [NumberField K] {x : RingOfIntegers K} (h_x_nezero : x ā‰  0) :
              (Function.mulSupport fun (w : FinitePlace K) => w ā†‘x).Finite
              theorem NumberField.FinitePlace.mulSupport_finite {K : Type u_1} [Field K] [NumberField K] {x : K} (h_x_nezero : x ā‰  0) :
              (Function.mulSupport fun (w : FinitePlace K) => w x).Finite
              theorem IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm {K : Type u_1} [Field K] [NumberField K] (v : HeightOneSpectrum (NumberField.RingOfIntegers K)) {x : NumberField.RingOfIntegers K} (h_x_nezero : x ā‰  0) :
              ā€–(NumberField.embedding v) ā†‘xā€– * ā†‘(Ideal.absNorm (v.maxPowDividing (Ideal.span {x}))) = 1