The Product Formula for number fields #
In this file we prove the Product Formula for number fields: for any non-zero element x
of a
number field K
, we have ∏ |x|ᵥ=1
where the product runs over the equivalence classes of absolute
values of K
. The |⬝|ᵥ
are normalized as follows:
- for the infinite places,
|⬝|ᵥ
is the absolute value onK
induced by the corresponding field embedding inℂ
and the usual absolute value onℂ
; - for the finite places and a non-zero
x
,|x|ᵥ
is equal to the norm of the corresponding maximal ideal of𝓞 K
raised to the power of thev
-adic valuation ofx
.
Main Results #
NumberField.FinitePlace.prod_eq_inv_abs_norm
: for any non-zero elementx
of a number fieldK
, the product∏ |x|ᵥ
of the absolute values ofx
associated to the finite places ofK
is equal to the inverse of the norm ofx
.NumberField.prod_abs_eq_one
: for any non-zero elementx
of a number fieldK
, we have∏ |x|ᵥ=1
, where the product runs over the equivalence classes of absolute values ofK
.
Tags #
number field, embeddings, places, infinite places, finite places, product formula
theorem
NumberField.FinitePlace.prod_eq_inv_abs_norm_int
{K : Type u_1}
[Field K]
[NumberField K]
{x : RingOfIntegers K}
(h_x_nezero : x ≠ 0)
:
∏ᶠ (w : FinitePlace K), w ↑x = |↑((Algebra.norm ℤ) x)|⁻¹
For any non-zero x
in 𝓞 K
, the prduct of w x
, where w
runs over FinitePlace K
, is
equal to the inverse of the absolute value of Algebra.norm ℤ x
.
theorem
NumberField.FinitePlace.prod_eq_inv_abs_norm
{K : Type u_1}
[Field K]
[NumberField K]
{x : K}
(h_x_nezero : x ≠ 0)
:
∏ᶠ (w : FinitePlace K), w x = ↑|(Algebra.norm ℚ) x|⁻¹
For any non-zero x
in K
, the prduct of w x
, where w
runs over FinitePlace K
, is
equal to the inverse of the absolute value of Algebra.norm ℚ x
.
theorem
NumberField.prod_abs_eq_one
{K : Type u_1}
[Field K]
[NumberField K]
{x : K}
(h_x_nezero : x ≠ 0)
:
(∏ w : InfinitePlace K, w x ^ w.mult) * ∏ᶠ (w : FinitePlace K), w x = 1
The Product Formula for the Number Field K
.