Documentation

Mathlib.NumberTheory.LSeries.Positivity

Positivity of values of L-series #

The main results of this file are as follows.

theorem LSeries.iteratedDeriv_alternating {a : } (hn : 0 a) {x : } (h : abscissaOfAbsConv a < x) (n : ) :
0 (-1) ^ n * iteratedDeriv n (LSeries a) x

If all values of a -valued arithmetic function are nonnegative reals and x is a real number in the domain of absolute convergence, then the nth iterated derivative of the associated L-series is nonnegative real when n is even and nonpositive real when n is odd.

theorem LSeries.positive {a : } (ha₀ : 0 a) (ha₁ : 0 < a 1) {x : } (hx : abscissaOfAbsConv a < x) :
0 < LSeries a x

If all values of a : ℕ → ℂ are nonnegative reals and a 1 is positive, then L a x is positive real for all real x larger than abscissaOfAbsConv a.

theorem LSeries.positive_of_differentiable_of_eqOn {a : } (ha₀ : 0 a) (ha₁ : 0 < a 1) {f : } (hf : Differentiable f) {x : } (hx : abscissaOfAbsConv a x) (hf' : Set.EqOn f (LSeries a) {s : | x < s.re}) (y : ) :
0 < f y

If all values of a : ℕ → ℂ are nonnegative reals and a 1 is positive, and the L-series of a agrees with an entire function f on some open right half-plane where it converges, then f is real and positive on .

theorem ArithmeticFunction.iteratedDeriv_LSeries_alternating (a : ArithmeticFunction ) (hn : ∀ (n : ), 0 a n) {x : } (h : LSeries.abscissaOfAbsConv a < x) (n : ) :
0 (-1) ^ n * iteratedDeriv n (LSeries fun (x : ) => a x) x

If all values of a -valued arithmetic function are nonnegative reals and x is a real number in the domain of absolute convergence, then the nth iterated derivative of the associated L-series is nonnegative real when n is even and nonpositive real when n is odd.

theorem ArithmeticFunction.LSeries_positive {a : } (ha₀ : 0 a) (ha₁ : 0 < a 1) {x : } (hx : LSeries.abscissaOfAbsConv a < x) :
0 < LSeries a x

If all values of a -valued arithmetic function a are nonnegative reals and a 1 is positive, then L a x is positive real for all real x larger than abscissaOfAbsConv a.

theorem ArithmeticFunction.LSeries_positive_of_differentiable_of_eqOn {a : ArithmeticFunction } (ha₀ : 0 fun (x : ) => a x) (ha₁ : 0 < a 1) {f : } (hf : Differentiable f) {x : } (hx : LSeries.abscissaOfAbsConv a x) (hf' : Set.EqOn f (LSeries a) {s : | x < s.re}) (y : ) :
0 < f y

If all values of a -valued arithmetic function a are nonnegative reals and a 1 is positive, and the L-series of a agrees with an entire function f on some open right half-plane where it converges, then f is real and positive on .