Level one modular forms #
This file contains results specific to modular forms of level one, ie. modular forms for SL(2, ℤ)
.
TODO: Add finite-dimensionality of these spaces of modular forms.
theorem
SlashInvariantForm.exists_one_half_le_im_and_norm_le
{k : ℤ}
(hk : k ≤ 0)
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
[SlashInvariantFormClass F ⊤ k]
(f : F)
(τ : UpperHalfPlane)
:
theorem
SlashInvariantForm.wt_eq_zero_of_eq_const
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(k : ℤ)
[SlashInvariantFormClass F ⊤ k]
{f : F}
{c : ℂ}
(hf : ∀ (τ : UpperHalfPlane), f τ = c)
:
If a constant function is modular of weight k
, then either k = 0
, or the constant is 0
.