Level one modular forms #
This file contains results specific to modular forms of level one, ie. modular forms for SL(2, ℤ)
.
TODO: Add finite-dimensionality of these spaces of modular forms.
theorem
SlashInvariantForm.exists_one_half_le_im_and_norm_le
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
{k : ℤ}
[SlashInvariantFormClass F (CongruenceSubgroup.Gamma 1) k]
(hk : k ≤ 0)
(f : F)
(τ : UpperHalfPlane)
:
theorem
SlashInvariantForm.wt_eq_zero_of_eq_const
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(k : ℤ)
[SlashInvariantFormClass F (CongruenceSubgroup.Gamma 1) k]
{f : F}
{c : ℂ}
(hf : ⇑f = Function.const UpperHalfPlane c)
:
If a constant function is modular of weight k
, then either k = 0
, or the constant is 0
.
theorem
ModularFormClass.levelOne_neg_weight_eq_zero
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
{k : ℤ}
[ModularFormClass F (CongruenceSubgroup.Gamma 1) k]
(hk : k < 0)
(f : F)
:
⇑f = 0
theorem
ModularFormClass.levelOne_weight_zero_const
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
[ModularFormClass F (CongruenceSubgroup.Gamma 1) 0]
(f : F)
:
∃ (c : ℂ), ⇑f = Function.const UpperHalfPlane c
theorem
ModularForm.levelOne_weight_zero_rank_one :
Module.rank ℂ (ModularForm (CongruenceSubgroup.Gamma 1) 0) = 1
theorem
ModularForm.levelOne_neg_weight_rank_zero
{k : ℤ}
(hk : k < 0)
:
Module.rank ℂ (ModularForm (CongruenceSubgroup.Gamma 1) k) = 0