Level one modular forms #
This file contains results specific to modular forms of level one, i.e. modular forms for
SL(2, ℤ).
TODO: Add finite-dimensionality of these spaces of modular forms.
theorem
SlashInvariantForm.exists_one_half_le_im_and_norm_le
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
{k : ℤ}
[SlashInvariantFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) k]
(hk : k ≤ 0)
(f : F)
(τ : UpperHalfPlane)
 :
theorem
SlashInvariantForm.wt_eq_zero_of_eq_const
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(k : ℤ)
[SlashInvariantFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) k]
{f : F}
{c : ℂ}
(hf : ⇑f = Function.const UpperHalfPlane c)
 :
If a constant function is modular of weight k, then either k = 0, or the constant is 0.
theorem
ModularFormClass.levelOne_neg_weight_eq_zero
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
{k : ℤ}
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) k]
(hk : k < 0)
(f : F)
 :
theorem
ModularFormClass.levelOne_weight_zero_const
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) 0]
(f : F)
 :
∃ (c : ℂ), ⇑f = Function.const UpperHalfPlane c