Documentation

Mathlib.NumberTheory.ModularForms.QExpansion

q-expansions of modular forms #

We show that a modular form of level ฮ“(n) can be written as ฯ„ โ†ฆ F (๐•ข n ฯ„) where F is analytic on the open unit disc, and ๐•ข n is the parameter ฯ„ โ†ฆ exp (2 * I * ฯ€ * ฯ„ / n). As an application, we show that cusp forms decay exponentially to 0 as im ฯ„ โ†’ โˆž.

We also define the q-expansion of a modular form, either as a power series or as a FormalMultilinearSeries, and show that it converges to f on the upper half plane.

Main definitions and results #

TO DO: #

The value of f at the cusp โˆž (or an arbitrary choice of value if this limit is not well-defined).

Equations
Instances For

    The analytic function F such that f ฯ„ = F (exp (2 * ฯ€ * I * ฯ„ / h)), extended by a choice of limit at 0.

    Equations
    Instances For
      theorem SlashInvariantFormClass.eq_cuspFunction {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [SlashInvariantFormClass F ฮ“ k] (ฯ„ : UpperHalfPlane) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (hh : h โ‰  0) :
      cuspFunction h (โ‡‘f) (Function.Periodic.qParam h โ†‘ฯ„) = f ฯ„

      The q-expansion of a level n modular form, bundled as a PowerSeries.

      Equations
      Instances For
        theorem ModularFormClass.qExpansion_coeff_zero {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        theorem ModularFormClass.hasSum_qExpansion_of_norm_lt {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) {q : โ„‚} (hq : โ€–qโ€– < 1) :
        @[deprecated ModularFormClass.hasSum_qExpansion_of_norm_lt (since := "2025-12-04")]
        theorem ModularFormClass.hasSum_qExpansion_of_abs_lt {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) {q : โ„‚} (hq : โ€–qโ€– < 1) :

        Alias of ModularFormClass.hasSum_qExpansion_of_norm_lt.

        theorem ModularFormClass.hasSum_qExpansion {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (ฯ„ : UpperHalfPlane) :
        HasSum (fun (m : โ„•) => (PowerSeries.coeff m) (qExpansion h f) โ€ข Function.Periodic.qParam h โ†‘ฯ„ ^ m) (f ฯ„)

        The q-expansion of f is an FPowerSeries representing cuspFunction n f.

        theorem ModularFormClass.qExpansion_coeff_eq_circleIntegral {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (n : โ„•) {R : โ„} (hR : 0 < R) (hR' : R < 1) :

        The q-expansion coefficient can be expressed as a circleIntegral for any radius 0 < R < 1.

        theorem ModularFormClass.qExpansion_coeff_eq_intervalIntegral {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (n : โ„•) {t : โ„} (ht : 0 < t) :
        (PowerSeries.coeff n) (qExpansion h f) = 1 / โ†‘h * โˆซ (u : โ„) in 0..h, 1 / Function.Periodic.qParam h (โ†‘u + โ†‘t * Complex.I) ^ n * f { coe := โ†‘u + โ†‘t * Complex.I, coe_im_pos := โ‹ฏ }

        If h is a positive strict period of f, then the q-expansion coefficient can be expressed as an integral along a horizontal line in the upper half-plane from t * I to h + t * I, for any 0 < t.

        theorem ModularFormClass.exp_decay_sub_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        (fun (ฯ„ : UpperHalfPlane) => f ฯ„ - UpperHalfPlane.valueAtInfty โ‡‘f) =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem ModularFormClass.exp_decay_sub_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] :
        โˆƒ c > 0, (fun (ฯ„ : UpperHalfPlane) => f ฯ„ - UpperHalfPlane.valueAtInfty โ‡‘f) =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)

        Version of exp_decay_sub_atImInfty stating a less precise result but easier to apply in practice (not specifying the growth rate precisely).

        Note that the Fact hypothesis is automatically synthesized for arithmetic subgroups. The discreteness hypothesis may be unnecessary, but it is satisfied in the cases of interest.

        theorem UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} {f : F} [ModularFormClass F ฮ“ k] (hf : IsZeroAtImInfty โ‡‘f) (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        โ‡‘f =O[atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {f : F} [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] (hf : IsZeroAtImInfty โ‡‘f) :
        โˆƒ c > 0, โ‡‘f =O[atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)

        Version of exp_decay_atImInfty stating a less precise result but easier to apply in practice (not specifying the growth rate precisely). Note that the Fact hypothesis is automatically synthesized for arithmetic subgroups.

        theorem CuspFormClass.cuspFunction_apply_zero {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [CuspFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        theorem CuspFormClass.exp_decay_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [CuspFormClass F ฮ“ k] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        โ‡‘f =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem CuspFormClass.exp_decay_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} (f : F) [CuspFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] :
        โˆƒ c > 0, โ‡‘f =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)