Documentation

Mathlib.NumberTheory.ModularForms.QExpansion

q-expansions of modular forms #

We show that a modular form of level ฮ“(n) can be written as ฯ„ โ†ฆ F (๐•ข n ฯ„) where F is analytic on the open unit disc, and ๐•ข n is the parameter ฯ„ โ†ฆ exp (2 * I * ฯ€ * ฯ„ / n). As an application, we show that cusp forms decay exponentially to 0 as im ฯ„ โ†’ โˆž.

We also define the q-expansion of a modular form, either as a power series or as a FormalMultilinearSeries, and show that it converges to f on the upper half plane.

Main definitions and results #

TO DO: #

The value of f at the cusp โˆž (or an arbitrary choice of value if this limit is not well-defined).

Equations
Instances For

    The analytic function F such that f ฯ„ = F (exp (2 * ฯ€ * I * ฯ„ / h)), extended by a choice of limit at 0.

    Equations
    Instances For
      theorem SlashInvariantFormClass.eq_cuspFunction {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [SlashInvariantFormClass F ฮ“ k] (ฯ„ : UpperHalfPlane) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (hh : h โ‰  0) :
      cuspFunction h (โ‡‘f) (Function.Periodic.qParam h โ†‘ฯ„) = f ฯ„
      theorem ModularFormClass.cuspFunction_apply_zero {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :

      The q-expansion of a level n modular form, bundled as a PowerSeries.

      Equations
      Instances For
        theorem ModularFormClass.qExpansion_coeff_zero {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        theorem ModularFormClass.hasSum_qExpansion_of_norm_lt {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) {q : โ„‚} (hq : โ€–qโ€– < 1) :
        @[deprecated ModularFormClass.hasSum_qExpansion_of_norm_lt (since := "2025-12-04")]
        theorem ModularFormClass.hasSum_qExpansion_of_abs_lt {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) {q : โ„‚} (hq : โ€–qโ€– < 1) :

        Alias of ModularFormClass.hasSum_qExpansion_of_norm_lt.

        theorem ModularFormClass.hasSum_qExpansion {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (ฯ„ : UpperHalfPlane) :
        HasSum (fun (m : โ„•) => (PowerSeries.coeff m) (qExpansion h f) โ€ข Function.Periodic.qParam h โ†‘ฯ„ ^ m) (f ฯ„)

        The q-expansion of f is an FPowerSeries representing cuspFunction n f.

        theorem ModularFormClass.qExpansion_coeff_eq_circleIntegral {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (n : โ„•) {R : โ„} (hR : 0 < R) (hR' : R < 1) :

        The q-expansion coefficient can be expressed as a circleIntegral for any radius 0 < R < 1.

        theorem ModularFormClass.qExpansion_coeff_eq_intervalIntegral {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) (n : โ„•) {t : โ„} (ht : 0 < t) :
        (PowerSeries.coeff n) (qExpansion h f) = 1 / โ†‘h * โˆซ (u : โ„) in 0..h, 1 / Function.Periodic.qParam h (โ†‘u + โ†‘t * Complex.I) ^ n * f โŸจโ†‘u + โ†‘t * Complex.I, โ‹ฏโŸฉ

        If h is a positivie strict period of f, then the q-expansion coefficient can be expressed as an integral along a horizontal line in the upper half-plane from t * I to h + t * I, for any 0 < t.

        theorem ModularFormClass.exp_decay_sub_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        (fun (ฯ„ : UpperHalfPlane) => f ฯ„ - UpperHalfPlane.valueAtInfty โ‡‘f) =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem ModularFormClass.exp_decay_sub_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} (f : F) [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] :
        โˆƒ c > 0, (fun (ฯ„ : UpperHalfPlane) => f ฯ„ - UpperHalfPlane.valueAtInfty โ‡‘f) =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)

        Version of exp_decay_sub_atImInfty stating a less precise result but easier to apply in practice (not specifying the growth rate precisely). Note that the Fact hypothesis is automatically synthesized for arithmetic subgroups.

        theorem UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} {f : F} [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hf : IsZeroAtImInfty โ‡‘f) (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        โ‡‘f =O[atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {f : F} [ModularFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] (hf : IsZeroAtImInfty โ‡‘f) :
        โˆƒ c > 0, โ‡‘f =O[atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)

        Version of exp_decay_atImInfty stating a less precise result but easier to apply in practice (not specifying the growth rate precisely). Note that the Fact hypothesis is automatically synthesized for arithmetic subgroups.

        theorem CuspFormClass.cuspFunction_apply_zero {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [CuspFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        theorem CuspFormClass.exp_decay_atImInfty {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} {h : โ„} (f : F) [CuspFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] (hh : 0 < h) (hฮ“ : h โˆˆ ฮ“.strictPeriods) :
        โ‡‘f =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-2 * Real.pi * ฯ„.im / h)
        theorem CuspFormClass.exp_decay_atImInfty' {k : โ„ค} {F : Type u_1} [FunLike F UpperHalfPlane โ„‚] {ฮ“ : Subgroup (GL (Fin 2) โ„)} (f : F) [CuspFormClass F ฮ“ k] [ฮ“.HasDetPlusMinusOne] [DiscreteTopology โ†ฅฮ“] [Fact (IsCusp OnePoint.infty ฮ“)] :
        โˆƒ c > 0, โ‡‘f =O[UpperHalfPlane.atImInfty] fun (ฯ„ : UpperHalfPlane) => Real.exp (-c * ฯ„.im)