@[reducible, inline]
Construct a bundled BddOrd
from the underlying type and typeclass.
Equations
- BddOrd.of X = BddOrd.mk (PartOrd.mk X)
Instances For
The type of morphisms in BddOrd R
.
- hom' : BoundedOrderHom ↑X.toPartOrd ↑Y.toPartOrd
The underlying
BoundedOrderHom
.
Instances For
instance
BddOrd.instConcreteCategoryBoundedOrderHomCarrier :
CategoryTheory.ConcreteCategory BddOrd fun (x1 x2 : BddOrd) => BoundedOrderHom ↑x1.toPartOrd ↑x2.toPartOrd
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev
BddOrd.ofHom
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
:
Typecheck a BoundedOrderHom
as a morphism in BddOrd
.
Equations
Instances For
Use the ConcreteCategory.hom
projection for @[simps]
lemmas.
Equations
- BddOrd.Hom.Simps.hom X Y f = f.hom
Instances For
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
BddOrd.ext
{X Y : BddOrd}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X.toPartOrd), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
@[simp]
@[simp]
theorem
BddOrd.hom_ofHom
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
:
@[simp]
@[simp]
theorem
BddOrd.ofHom_comp
{X Y Z : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
[PartialOrder Z]
[BoundedOrder Z]
(f : BoundedOrderHom X Y)
(g : BoundedOrderHom Y Z)
:
theorem
BddOrd.ofHom_apply
{X Y : Type u}
[PartialOrder X]
[BoundedOrder X]
[PartialOrder Y]
[BoundedOrder Y]
(f : BoundedOrderHom X Y)
(x : X)
:
Equations
- BddOrd.instInhabited = { default := BddOrd.of PUnit.{?u.3 + 1} }
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
OrderDual
as a functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
Constructs an equivalence between bounded orders from an order isomorphism between them.
Equations
- BddOrd.Iso.mk e = { hom := BddOrd.ofHom ↑e, inv := BddOrd.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }