The category of linear orders.
- carrier : Type u_1
The underlying linearly ordered type.
- str : LinearOrder ↑self
Instances For
Equations
- LinOrd.instCoeSortType = { coe := LinOrd.carrier }
instance
LinOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory LinOrd fun (x1 x2 : LinOrd) => ↑x1 →o ↑x2
Equations
- One or more equations did not get rendered due to their size.
Use the ConcreteCategory.hom
projection for @[simps]
lemmas.
Equations
- LinOrd.Hom.Simps.hom X Y f = f.hom
Instances For
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ext
{X Y : LinOrd}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ofHom_comp
{X Y Z : Type u}
[LinearOrder X]
[LinearOrder Y]
[LinearOrder Z]
(f : X →o Y)
(g : Y →o Z)
:
Equations
- LinOrd.instInhabited = { default := LinOrd.of PUnit.{?u.3 + 1} }
Equations
- One or more equations did not get rendered due to their size.
Constructs an equivalence between linear orders from an order isomorphism between them.
Equations
- LinOrd.Iso.mk e = { hom := LinOrd.ofHom ↑e, inv := LinOrd.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
OrderDual
as a functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]