Documentation

Mathlib.Order.Category.LinOrd

Category of linear orders #

This defines LinOrd, the category of linear orders with monotone maps.

structure LinOrd :
Type (u_1 + 1)

The category of linear orders.

  • carrier : Type u_1

    The underlying linearly ordered type.

  • str : LinearOrder self
Instances For
    @[reducible, inline]
    abbrev LinOrd.of (X : Type u_1) [LinearOrder X] :

    Construct a bundled LinOrd from the underlying type and typeclass.

    Equations
    Instances For
      structure LinOrd.Hom (X Y : LinOrd) :

      The type of morphisms in LinOrd R.

      Instances For
        theorem LinOrd.Hom.ext {X Y : LinOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev LinOrd.Hom.hom {X Y : LinOrd} (f : X.Hom Y) :
        X →o Y

        Turn a morphism in LinOrd back into a OrderHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev LinOrd.ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
          of X of Y

          Typecheck a OrderHom as a morphism in LinOrd.

          Equations
          Instances For
            def LinOrd.Hom.Simps.hom (X Y : LinOrd) (f : X.Hom Y) :
            X →o Y

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              theorem LinOrd.ext {X Y : LinOrd} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
              f = g
              theorem LinOrd.coe_of (X : Type u) [LinearOrder X] :
              (of X) = X
              @[simp]
              theorem LinOrd.hom_comp {X Y Z : LinOrd} (f : X Y) (g : Y Z) :
              theorem LinOrd.hom_ext {X Y : LinOrd} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
              f = g
              @[simp]
              theorem LinOrd.hom_ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
              @[simp]
              theorem LinOrd.ofHom_hom {X Y : LinOrd} (f : X Y) :
              @[simp]
              theorem LinOrd.ofHom_comp {X Y Z : Type u} [LinearOrder X] [LinearOrder Y] [LinearOrder Z] (f : X →o Y) (g : Y →o Z) :
              theorem LinOrd.ofHom_apply {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              def LinOrd.Iso.mk {α β : LinOrd} (e : α ≃o β) :
              α β

              Constructs an equivalence between linear orders from an order isomorphism between them.

              Equations
              Instances For
                @[simp]
                theorem LinOrd.Iso.mk_inv {α β : LinOrd} (e : α ≃o β) :
                (mk e).inv = ofHom e.symm
                @[simp]
                theorem LinOrd.Iso.mk_hom {α β : LinOrd} (e : α ≃o β) :
                (mk e).hom = ofHom e

                OrderDual as a functor.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem LinOrd.dual_map {X✝ Y✝ : LinOrd} (f : X✝ Y✝) :

                  The equivalence between LinOrd and itself induced by OrderDual both ways.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For