Documentation

Mathlib.Order.Category.LinOrd

Category of linear orders #

This defines LinOrd, the category of linear orders with monotone maps.

structure LinOrd.Hom (X Y : LinOrd) :

The type of morphisms in LinOrd R.

Instances For
    theorem LinOrd.Hom.ext {X Y : LinOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
    x = y
    theorem LinOrd.Hom.ext_iff {X Y : LinOrd} {x y : X.Hom Y} :
    x = y x.hom' = y.hom'
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • One or more equations did not get rendered due to their size.
    @[reducible, inline]
    abbrev LinOrd.Hom.hom {X Y : LinOrd} (f : X.Hom Y) :
    X →o Y

    Turn a morphism in LinOrd back into a OrderHom.

    Equations
    Instances For
      @[reducible, inline]
      abbrev LinOrd.ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
      { carrier := X, str := inst✝ } { carrier := Y, str := inst✝¹ }

      Typecheck a OrderHom as a morphism in LinOrd.

      Equations
      Instances For
        def LinOrd.Hom.Simps.hom (X Y : LinOrd) (f : X.Hom Y) :
        X →o Y

        Use the ConcreteCategory.hom projection for @[simps] lemmas.

        Equations
        Instances For

          The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

          theorem LinOrd.ext {X Y : LinOrd} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
          f = g
          theorem LinOrd.coe_of (X : Type u) [LinearOrder X] :
          { carrier := X, str := inst✝ } = X
          @[simp]
          theorem LinOrd.hom_comp {X Y Z : LinOrd} (f : X Y) (g : Y Z) :
          theorem LinOrd.hom_ext {X Y : LinOrd} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
          f = g
          theorem LinOrd.hom_ext_iff {X Y : LinOrd} {f g : X Y} :
          @[simp]
          theorem LinOrd.hom_ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
          @[simp]
          theorem LinOrd.ofHom_hom {X Y : LinOrd} (f : X Y) :
          @[simp]
          theorem LinOrd.ofHom_id {X : Type u} [LinearOrder X] :
          ofHom OrderHom.id = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
          @[simp]
          theorem LinOrd.ofHom_comp {X Y Z : Type u} [LinearOrder X] [LinearOrder Y] [LinearOrder Z] (f : X →o Y) (g : Y →o Z) :
          theorem LinOrd.ofHom_apply {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) (x : X) :
          Equations
          • One or more equations did not get rendered due to their size.
          def LinOrd.Iso.mk {α β : LinOrd} (e : α ≃o β) :
          α β

          Constructs an equivalence between linear orders from an order isomorphism between them.

          Equations
          Instances For
            @[simp]
            theorem LinOrd.Iso.mk_inv {α β : LinOrd} (e : α ≃o β) :
            (mk e).inv = ofHom e.symm
            @[simp]
            theorem LinOrd.Iso.mk_hom {α β : LinOrd} (e : α ≃o β) :
            (mk e).hom = ofHom e

            OrderDual as a functor.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem LinOrd.dual_map {X✝ Y✝ : LinOrd} (f : X✝ Y✝) :

              The equivalence between LinOrd and itself induced by OrderDual both ways.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For