Equations
- Preord.instCoeSortType = { coe := Preord.carrier }
instance
Preord.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory Preord fun (x1 x2 : Preord) => ↑x1 →o ↑x2
Equations
- One or more equations did not get rendered due to their size.
Use the ConcreteCategory.hom
projection for @[simps]
lemmas.
Equations
- Preord.Hom.Simps.hom X Y f = f.hom
Instances For
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
Preord.ext
{X Y : Preord}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
@[simp]
@[simp]
Equations
- Preord.instInhabited = { default := Preord.of PUnit.{?u.3 + 1} }
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
- Preord.Iso.mk e = { hom := Preord.ofHom ↑e, inv := Preord.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
OrderDual
as a functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
The embedding of Preord
into Cat
.
Equations
- preordToCat = { obj := fun (X : Preord) => CategoryTheory.Cat.of ↑X, map := fun {X Y : Preord} (f : X ⟶ Y) => ⋯.functor, map_id := preordToCat.proof_2, map_comp := @preordToCat.proof_3 }