Documentation

Mathlib.Order.Category.Preord

Category of preorders #

This defines Preord, the category of preorders with monotone maps.

structure Preord :
Type (u_1 + 1)

The category of preorders.

  • of :: (
    • carrier : Type u_1

      The underlying preordered type.

    • str : Preorder self
  • )
Instances For
    structure Preord.Hom (X Y : Preord) :

    The type of morphisms in Preord R.

    Instances For
      theorem Preord.Hom.ext {X Y : Preord} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      theorem Preord.Hom.ext_iff {X Y : Preord} {x y : X.Hom Y} :
      x = y x.hom' = y.hom'
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      @[reducible, inline]
      abbrev Preord.Hom.hom {X Y : Preord} (f : X.Hom Y) :
      X →o Y

      Turn a morphism in Preord back into a OrderHom.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Preord.ofHom {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) :
        { carrier := X, str := inst✝ } { carrier := Y, str := inst✝¹ }

        Typecheck a OrderHom as a morphism in Preord.

        Equations
        Instances For
          def Preord.Hom.Simps.hom (X Y : Preord) (f : X.Hom Y) :
          X →o Y

          Use the ConcreteCategory.hom projection for @[simps] lemmas.

          Equations
          Instances For

            The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

            theorem Preord.ext {X Y : Preord} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
            f = g
            theorem Preord.coe_of (X : Type u) [Preorder X] :
            { carrier := X, str := inst✝ } = X
            @[simp]
            theorem Preord.hom_comp {X Y Z : Preord} (f : X Y) (g : Y Z) :
            theorem Preord.hom_ext {X Y : Preord} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
            f = g
            theorem Preord.hom_ext_iff {X Y : Preord} {f g : X Y} :
            @[simp]
            theorem Preord.hom_ofHom {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) :
            @[simp]
            theorem Preord.ofHom_hom {X Y : Preord} (f : X Y) :
            @[simp]
            theorem Preord.ofHom_id {X : Type u} [Preorder X] :
            ofHom OrderHom.id = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
            @[simp]
            theorem Preord.ofHom_comp {X Y Z : Type u} [Preorder X] [Preorder Y] [Preorder Z] (f : X →o Y) (g : Y →o Z) :
            theorem Preord.ofHom_apply {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) (x : X) :
            def Preord.Iso.mk {α β : Preord} (e : α ≃o β) :
            α β

            Constructs an equivalence between preorders from an order isomorphism between them.

            Equations
            Instances For
              @[simp]
              theorem Preord.Iso.mk_hom {α β : Preord} (e : α ≃o β) :
              (mk e).hom = ofHom e
              @[simp]
              theorem Preord.Iso.mk_inv {α β : Preord} (e : α ≃o β) :
              (mk e).inv = ofHom e.symm

              OrderDual as a functor.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Preord.dual_map {X✝ Y✝ : Preord} (f : X✝ Y✝) :

                The equivalence between Preord and itself induced by OrderDual both ways.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The embedding of Preord into Cat.

                  Equations
                  Instances For
                    @[simp]
                    theorem preordToCat_map {X✝ Y✝ : Preord} (f : X✝ Y✝) :