Documentation

Mathlib.Order.Cofinal

Cofinal sets #

A set s in an ordered type α is cofinal when for every a : α there exists an element of s greater or equal to it. This file provides a basic API for the IsCofinal predicate.

For the cofinality of a set as a cardinal, see Mathlib.SetTheory.Cardinal.Cofinality.

TODO #

theorem IsCofinal.of_isEmpty {α : Type u_1} [LE α] [IsEmpty α] (s : Set α) :
theorem IsCofinal.singleton_top {α : Type u_1} [LE α] [OrderTop α] :
theorem IsCofinal.mono {α : Type u_1} [LE α] {s t : Set α} (h : s t) (hs : IsCofinal s) :
theorem IsCofinal.univ {α : Type u_1} [Preorder α] :
IsCofinal Set.univ
instance instInhabitedSubtypeSetIsCofinal {α : Type u_1} [Preorder α] :
Inhabited { s : Set α // IsCofinal s }
Equations
  • instInhabitedSubtypeSetIsCofinal = { default := Set.univ, }
theorem IsCofinal.trans {α : Type u_1} [Preorder α] {s : Set α} {t : Set s} (hs : IsCofinal s) (ht : IsCofinal t) :
IsCofinal (Subtype.val '' t)

A cofinal subset of a cofinal subset is cofinal.

theorem IsCofinal.mem_of_isMax {α : Type u_1} [PartialOrder α] {s : Set α} {a : α} (ha : IsMax a) (hs : IsCofinal s) :
a s
theorem IsCofinal.top_mem {α : Type u_1} [PartialOrder α] [OrderTop α] {s : Set α} (hs : IsCofinal s) :
@[simp]
theorem isCofinal_iff_top_mem {α : Type u_1} [PartialOrder α] [OrderTop α] {s : Set α} :
theorem not_isCofinal_iff {α : Type u_1} [LinearOrder α] {s : Set α} :
¬IsCofinal s ∃ (x : α), ys, y < x
theorem BddAbove.of_not_isCofinal {α : Type u_1} [LinearOrder α] {s : Set α} (h : ¬IsCofinal s) :
theorem IsCofinal.of_not_bddAbove {α : Type u_1} [LinearOrder α] {s : Set α} (h : ¬BddAbove s) :

In a linear order with no maximum, cofinal sets are the same as unbounded sets.

In a linear order with no maximum, cofinal sets are the same as unbounded sets.