Limits of intervals along filters #
This file contains some lemmas about how filters Ixx behave as the endpoints tend to ±∞.
theorem
Finset.tendsto_Icc_atBot_prod_atTop
{α : Type u_1}
[Preorder α]
[LocallyFiniteOrder α]
:
Filter.Tendsto (fun (p : α × α) => Icc p.1 p.2) (Filter.atBot ×ˢ Filter.atTop) Filter.atTop
theorem
Finset.tendsto_Ioc_atBot_prod_atTop
{α : Type u_1}
[Preorder α]
[LocallyFiniteOrder α]
[NoBotOrder α]
:
Filter.Tendsto (fun (p : α × α) => Ioc p.1 p.2) (Filter.atBot ×ˢ Filter.atTop) Filter.atTop
theorem
Finset.tendsto_Ico_atBot_prod_atTop
{α : Type u_1}
[Preorder α]
[LocallyFiniteOrder α]
[NoTopOrder α]
:
Filter.Tendsto (fun (p : α × α) => Ico p.1 p.2) (Filter.atBot ×ˢ Filter.atTop) Filter.atTop
theorem
Finset.tendsto_Ioo_atBot_prod_atTop
{α : Type u_1}
[Preorder α]
[LocallyFiniteOrder α]
[NoBotOrder α]
[NoTopOrder α]
:
Filter.Tendsto (fun (p : α × α) => Ioo p.1 p.2) (Filter.atBot ×ˢ Filter.atTop) Filter.atTop
theorem
Finset.tendsto_Icc_neg_atTop_atTop
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
[LocallyFiniteOrder α]
:
Filter.Tendsto (fun (a : α) => Icc (-a) a) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ioc_neg_atTop_atTop
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
[LocallyFiniteOrder α]
[NoBotOrder α]
:
Filter.Tendsto (fun (a : α) => Ioc (-a) a) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ico_neg_atTop_atTop
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
[LocallyFiniteOrder α]
[NoTopOrder α]
:
Filter.Tendsto (fun (a : α) => Ico (-a) a) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ioo_neg_atTop_atTop
{α : Type u_1}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
[LocallyFiniteOrder α]
[NoBotOrder α]
[NoTopOrder α]
:
Filter.Tendsto (fun (a : α) => Ioo (-a) a) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Icc_neg
{R : Type u_1}
[Ring R]
[PartialOrder R]
[IsOrderedRing R]
[LocallyFiniteOrder R]
[Archimedean R]
:
Filter.Tendsto (fun (n : ℕ) => Icc (-↑n) ↑n) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ioc_neg
{R : Type u_1}
[Ring R]
[PartialOrder R]
[IsOrderedRing R]
[LocallyFiniteOrder R]
[Archimedean R]
[Nontrivial R]
:
Filter.Tendsto (fun (n : ℕ) => Ioc (-↑n) ↑n) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ico_neg
{R : Type u_1}
[Ring R]
[PartialOrder R]
[IsOrderedRing R]
[LocallyFiniteOrder R]
[Archimedean R]
[Nontrivial R]
:
Filter.Tendsto (fun (n : ℕ) => Ico (-↑n) ↑n) Filter.atTop Filter.atTop
theorem
Finset.tendsto_Ioo_neg
{R : Type u_1}
[Ring R]
[PartialOrder R]
[IsOrderedRing R]
[LocallyFiniteOrder R]
[Archimedean R]
[Nontrivial R]
:
Filter.Tendsto (fun (n : ℕ) => Ioo (-↑n) ↑n) Filter.atTop Filter.atTop