Documentation

Mathlib.Order.Filter.Finite

Results filters related to finiteness. #

@[simp]
theorem Filter.biInter_mem {α : Type u} {f : Filter α} {β : Type v} {s : βSet α} {is : Set β} (hf : is.Finite) :
iis, s i f iis, s i f
@[simp]
theorem Filter.biInter_finset_mem {α : Type u} {f : Filter α} {β : Type v} {s : βSet α} (is : Finset β) :
iis, s i f iis, s i f
theorem Finset.iInter_mem_sets {α : Type u} {f : Filter α} {β : Type v} {s : βSet α} (is : Finset β) :
iis, s i f iis, s i f

Alias of Filter.biInter_finset_mem.

@[simp]
theorem Filter.sInter_mem {α : Type u} {f : Filter α} {s : Set (Set α)} (hfin : s.Finite) :
⋂₀ s f Us, U f
@[simp]
theorem Filter.iInter_mem {α : Type u} {f : Filter α} {β : Sort v} {s : βSet α} [Finite β] :
⋂ (i : β), s i f ∀ (i : β), s i f
theorem Filter.mem_generate_iff {α : Type u} {s : Set (Set α)} {U : Set α} :
U Filter.generate s ts, t.Finite ⋂₀ t U
theorem Filter.mem_iInf_of_iInter {α : Type u} {ι : Type u_2} {s : ιFilter α} {U : Set α} {I : Set ι} (I_fin : I.Finite) {V : ISet α} (hV : ∀ (i : I), V i s i) (hU : ⋂ (i : I), V i U) :
U ⨅ (i : ι), s i
theorem Filter.mem_iInf {α : Type u} {ι : Type u_2} {s : ιFilter α} {U : Set α} :
U ⨅ (i : ι), s i ∃ (I : Set ι), I.Finite ∃ (V : ISet α), (∀ (i : I), V i s i) U = ⋂ (i : I), V i
theorem Filter.mem_iInf' {α : Type u} {ι : Type u_2} {s : ιFilter α} {U : Set α} :
U ⨅ (i : ι), s i ∃ (I : Set ι), I.Finite ∃ (V : ιSet α), (∀ (i : ι), V i s i) (∀ iI, V i = Set.univ) U = iI, V i U = ⋂ (i : ι), V i
theorem Filter.exists_iInter_of_mem_iInf {ι : Type u_2} {α : Type u_3} {f : ιFilter α} {s : Set α} (hs : s ⨅ (i : ι), f i) :
∃ (t : ιSet α), (∀ (i : ι), t i f i) s = ⋂ (i : ι), t i
theorem Filter.mem_iInf_of_finite {ι : Type u_2} [Finite ι] {α : Type u_3} {f : ιFilter α} (s : Set α) :
s ⨅ (i : ι), f i ∃ (t : ιSet α), (∀ (i : ι), t i f i) s = ⋂ (i : ι), t i

Lattice equations #

theorem Pairwise.exists_mem_filter_of_disjoint {α : Type u} {ι : Type u_2} [Finite ι] {l : ιFilter α} (hd : Pairwise (Disjoint on l)) :
∃ (s : ιSet α), (∀ (i : ι), s i l i) Pairwise (Disjoint on s)
theorem Set.PairwiseDisjoint.exists_mem_filter {α : Type u} {ι : Type u_2} {l : ιFilter α} {t : Set ι} (hd : t.PairwiseDisjoint l) (ht : t.Finite) :
∃ (s : ιSet α), (∀ (i : ι), s i l i) t.PairwiseDisjoint s
theorem Filter.iInf_sets_eq_finite {α : Type u} {ι : Type u_2} (f : ιFilter α) :
(⨅ (i : ι), f i).sets = ⋃ (t : Finset ι), (⨅ it, f i).sets
theorem Filter.iInf_sets_eq_finite' {α : Type u} {ι : Sort x} (f : ιFilter α) :
(⨅ (i : ι), f i).sets = ⋃ (t : Finset (PLift ι)), (⨅ it, f i.down).sets
theorem Filter.mem_iInf_finite {α : Type u} {ι : Type u_2} {f : ιFilter α} (s : Set α) :
s iInf f ∃ (t : Finset ι), s it, f i
theorem Filter.mem_iInf_finite' {α : Type u} {ι : Sort x} {f : ιFilter α} (s : Set α) :
s iInf f ∃ (t : Finset (PLift ι)), s it, f i.down
@[reducible, inline]

The dual version does not hold! Filter α is not a CompleteDistribLattice.

Equations
Instances For
    Equations
    theorem Filter.mem_iInf_finset {α : Type u} {β : Type v} {s : Finset α} {f : αFilter β} {t : Set β} :
    t as, f a ∃ (p : αSet β), (∀ as, p a f a) t = as, p a
    theorem Filter.iInf_sets_induct {α : Type u} {ι : Sort x} {f : ιFilter α} {s : Set α} (hs : s iInf f) {p : Set αProp} (uni : p Set.univ) (ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ f ip s₂p (s₁ s₂)) :
    p s

    principal equations #

    @[simp]
    theorem Filter.iInf_principal_finset {α : Type u} {ι : Type w} (s : Finset ι) (f : ιSet α) :
    is, Filter.principal (f i) = Filter.principal (⋂ is, f i)
    theorem Filter.iInf_principal {α : Type u} {ι : Sort w} [Finite ι] (f : ιSet α) :
    ⨅ (i : ι), Filter.principal (f i) = Filter.principal (⋂ (i : ι), f i)
    @[simp]
    theorem Filter.iInf_principal' {α : Type u} {ι : Type w} [Finite ι] (f : ιSet α) :
    ⨅ (i : ι), Filter.principal (f i) = Filter.principal (⋂ (i : ι), f i)

    A special case of iInf_principal that is safe to mark simp.

    theorem Filter.iInf_principal_finite {α : Type u} {ι : Type w} {s : Set ι} (hs : s.Finite) (f : ιSet α) :
    is, Filter.principal (f i) = Filter.principal (⋂ is, f i)

    Eventually #

    @[simp]
    theorem Filter.eventually_all {α : Type u} {ι : Sort u_2} [Finite ι] {l : Filter α} {p : ιαProp} :
    (∀ᶠ (x : α) in l, ∀ (i : ι), p i x) ∀ (i : ι), ∀ᶠ (x : α) in l, p i x
    @[simp]
    theorem Filter.eventually_all_finite {α : Type u} {ι : Type u_2} {I : Set ι} (hI : I.Finite) {l : Filter α} {p : ιαProp} :
    (∀ᶠ (x : α) in l, iI, p i x) iI, ∀ᶠ (x : α) in l, p i x
    theorem Set.Finite.eventually_all {α : Type u} {ι : Type u_2} {I : Set ι} (hI : I.Finite) {l : Filter α} {p : ιαProp} :
    (∀ᶠ (x : α) in l, iI, p i x) iI, ∀ᶠ (x : α) in l, p i x

    Alias of Filter.eventually_all_finite.

    @[simp]
    theorem Filter.eventually_all_finset {α : Type u} {ι : Type u_2} (I : Finset ι) {l : Filter α} {p : ιαProp} :
    (∀ᶠ (x : α) in l, iI, p i x) iI, ∀ᶠ (x : α) in l, p i x
    theorem Finset.eventually_all {α : Type u} {ι : Type u_2} (I : Finset ι) {l : Filter α} {p : ιαProp} :
    (∀ᶠ (x : α) in l, iI, p i x) iI, ∀ᶠ (x : α) in l, p i x

    Alias of Filter.eventually_all_finset.

    Relation “eventually equal” #

    theorem Filter.EventuallyLE.iUnion {α : Type u} {ι : Sort x} {l : Filter α} [Finite ι] {s t : ιSet α} (h : ∀ (i : ι), s i ≤ᶠ[l] t i) :
    ⋃ (i : ι), s i ≤ᶠ[l] ⋃ (i : ι), t i
    theorem Filter.EventuallyEq.iUnion {α : Type u} {ι : Sort x} {l : Filter α} [Finite ι] {s t : ιSet α} (h : ∀ (i : ι), s i =ᶠ[l] t i) :
    ⋃ (i : ι), s i =ᶠ[l] ⋃ (i : ι), t i
    theorem Filter.EventuallyLE.iInter {α : Type u} {ι : Sort x} {l : Filter α} [Finite ι] {s t : ιSet α} (h : ∀ (i : ι), s i ≤ᶠ[l] t i) :
    ⋂ (i : ι), s i ≤ᶠ[l] ⋂ (i : ι), t i
    theorem Filter.EventuallyEq.iInter {α : Type u} {ι : Sort x} {l : Filter α} [Finite ι] {s t : ιSet α} (h : ∀ (i : ι), s i =ᶠ[l] t i) :
    ⋂ (i : ι), s i =ᶠ[l] ⋂ (i : ι), t i
    theorem Set.Finite.eventuallyLE_iUnion {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i
    theorem Filter.EventuallyLE.biUnion {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i

    Alias of Set.Finite.eventuallyLE_iUnion.

    theorem Set.Finite.eventuallyEq_iUnion {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i
    theorem Filter.EventuallyEq.biUnion {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i

    Alias of Set.Finite.eventuallyEq_iUnion.

    theorem Set.Finite.eventuallyLE_iInter {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i
    theorem Filter.EventuallyLE.biInter {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i

    Alias of Set.Finite.eventuallyLE_iInter.

    theorem Set.Finite.eventuallyEq_iInter {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i
    theorem Filter.EventuallyEq.biInter {α : Type u} {l : Filter α} {ι : Type u_2} {s : Set ι} (hs : s.Finite) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i

    Alias of Set.Finite.eventuallyEq_iInter.

    theorem Finset.eventuallyLE_iUnion {α : Type u} {l : Filter α} {ι : Type u_2} (s : Finset ι) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i
    theorem Finset.eventuallyEq_iUnion {α : Type u} {l : Filter α} {ι : Type u_2} (s : Finset ι) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i
    theorem Finset.eventuallyLE_iInter {α : Type u} {l : Filter α} {ι : Type u_2} (s : Finset ι) {f g : ιSet α} (hle : is, f i ≤ᶠ[l] g i) :
    is, f i ≤ᶠ[l] is, g i
    theorem Finset.eventuallyEq_iInter {α : Type u} {l : Filter α} {ι : Type u_2} (s : Finset ι) {f g : ιSet α} (heq : is, f i =ᶠ[l] g i) :
    is, f i =ᶠ[l] is, g i