Documentation

Mathlib.Order.Filter.Ker

Kernel of a filter #

In this file we define the kernel Filter.ker f of a filter f to be the intersection of all its sets.

We also prove that Filter.principal and Filter.ker form a Galois coinsertion and prove other basic theorems about Filter.ker.

theorem Filter.ker_def {α : Type u_2} (f : Filter α) :
f.ker = sf, s
@[simp]
theorem Filter.mem_ker {α : Type u_2} {f : Filter α} {a : α} :
a f.ker sf, a s
@[simp]
theorem Filter.subset_ker {α : Type u_2} {f : Filter α} {s : Set α} :
s f.ker tf, s t
def Filter.gi_principal_ker {α : Type u_2} :
GaloisCoinsertion Filter.principal Filter.ker

Filter.principal forms a Galois coinsertion with Filter.ker.

Equations
Instances For
    theorem Filter.ker_mono {α : Type u_2} :
    Monotone Filter.ker
    @[simp]
    theorem Filter.ker_bot {α : Type u_2} :
    .ker =
    @[simp]
    theorem Filter.ker_top {α : Type u_2} :
    .ker = Set.univ
    @[simp]
    theorem Filter.ker_eq_univ {α : Type u_2} {f : Filter α} :
    f.ker = Set.univ f =
    @[simp]
    theorem Filter.ker_inf {α : Type u_2} (f g : Filter α) :
    (f g).ker = f.ker g.ker
    @[simp]
    theorem Filter.ker_iInf {ι : Sort u_1} {α : Type u_2} (f : ιFilter α) :
    (⨅ (i : ι), f i).ker = ⋂ (i : ι), (f i).ker
    @[simp]
    theorem Filter.ker_sInf {α : Type u_2} (S : Set (Filter α)) :
    (sInf S).ker = fS, f.ker
    @[simp]
    theorem Filter.ker_principal {α : Type u_2} (s : Set α) :
    @[simp]
    theorem Filter.ker_pure {α : Type u_2} (a : α) :
    (pure a).ker = {a}
    @[simp]
    theorem Filter.ker_comap {α : Type u_2} {β : Type u_3} (m : αβ) (f : Filter β) :
    (Filter.comap m f).ker = m ⁻¹' f.ker
    @[simp]
    theorem Filter.ker_iSup {ι : Sort u_1} {α : Type u_2} (f : ιFilter α) :
    (⨆ (i : ι), f i).ker = ⋃ (i : ι), (f i).ker
    @[simp]
    theorem Filter.ker_sSup {α : Type u_2} (S : Set (Filter α)) :
    (sSup S).ker = fS, f.ker
    @[simp]
    theorem Filter.ker_sup {α : Type u_2} (f g : Filter α) :
    (f g).ker = f.ker g.ker