Ultrafilters #
An ultrafilter is a minimal (maximal in the set order) proper filter. In this file we define
hyperfilter
: the ultrafilter extending the cofinite filter.
theorem
Ultrafilter.eq_pure_of_finite_mem
{α : Type u}
{f : Ultrafilter α}
{s : Set α}
(h : s.Finite)
(h' : s ∈ f)
:
The ultrafilter extending the cofinite filter.
Equations
Instances For
theorem
Filter.nmem_hyperfilter_of_finite
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
s ∉ hyperfilter α
theorem
Set.Finite.nmem_hyperfilter
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
s ∉ Filter.hyperfilter α
Alias of Filter.nmem_hyperfilter_of_finite
.
theorem
Filter.compl_mem_hyperfilter_of_finite
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
Alias of Filter.compl_mem_hyperfilter_of_finite
.