Documentation

Mathlib.Order.Filter.Ultrafilter.Basic

Ultrafilters #

An ultrafilter is a minimal (maximal in the set order) proper filter. In this file we define

theorem Ultrafilter.finite_sUnion_mem_iff {α : Type u} {f : Ultrafilter α} {s : Set (Set α)} (hs : s.Finite) :
⋃₀ s f ts, t f
theorem Ultrafilter.finite_biUnion_mem_iff {α : Type u} {β : Type v} {f : Ultrafilter α} {is : Set β} {s : βSet α} (his : is.Finite) :
iis, s i f iis, s i f
theorem Ultrafilter.eventually_exists_mem_iff {α : Type u} {β : Type v} {f : Ultrafilter α} {is : Set β} {P : βαProp} (his : is.Finite) :
(∀ᶠ (i : α) in f, ais, P a i) ais, ∀ᶠ (i : α) in f, P a i
theorem Ultrafilter.eventually_exists_iff {α : Type u} {β : Type v} {f : Ultrafilter α} [Finite β] {P : βαProp} :
(∀ᶠ (i : α) in f, ∃ (a : β), P a i) ∃ (a : β), ∀ᶠ (i : α) in f, P a i
theorem Ultrafilter.eq_pure_of_finite_mem {α : Type u} {f : Ultrafilter α} {s : Set α} (h : s.Finite) (h' : s f) :
xs, f = pure x
theorem Ultrafilter.eq_pure_of_finite {α : Type u} [Finite α] (f : Ultrafilter α) :
∃ (a : α), f = pure a
theorem Ultrafilter.le_cofinite_or_eq_pure {α : Type u} (f : Ultrafilter α) :
f Filter.cofinite ∃ (a : α), f = pure a
theorem Ultrafilter.exists_ultrafilter_of_finite_inter_nonempty {α : Type u} (S : Set (Set α)) (cond : ∀ (T : Finset (Set α)), T S(⋂₀ T).Nonempty) :
∃ (F : Ultrafilter α), S (↑F).sets
theorem Filter.atTop_eq_pure_of_isTop {α : Type u} [LinearOrder α] {x : α} (hx : IsTop x) :
theorem Filter.atBot_eq_pure_of_isBot {α : Type u} [LinearOrder α] {x : α} (hx : IsBot x) :
theorem Filter.tendsto_iff_ultrafilter {α : Type u} {β : Type v} (f : αβ) (l₁ : Filter α) (l₂ : Filter β) :
Tendsto f l₁ l₂ ∀ (g : Ultrafilter α), g l₁Tendsto f (↑g) l₂

The tendsto relation can be checked on ultrafilters.

noncomputable def Filter.hyperfilter (α : Type u) [Infinite α] :

The ultrafilter extending the cofinite filter.

Equations
Instances For
    @[simp]
    theorem Filter.bot_ne_hyperfilter {α : Type u} [Infinite α] :
    theorem Filter.nmem_hyperfilter_of_finite {α : Type u} [Infinite α] {s : Set α} (hf : s.Finite) :
    shyperfilter α
    theorem Set.Finite.nmem_hyperfilter {α : Type u} [Infinite α] {s : Set α} (hf : s.Finite) :

    Alias of Filter.nmem_hyperfilter_of_finite.

    theorem Filter.compl_mem_hyperfilter_of_finite {α : Type u} [Infinite α] {s : Set α} (hf : s.Finite) :
    theorem Filter.mem_hyperfilter_of_finite_compl {α : Type u} [Infinite α] {s : Set α} (hf : s.Finite) :