Ultrafilters #
An ultrafilter is a minimal (maximal in the set order) proper filter. In this file we define
hyperfilter
: the ultrafilter extending the cofinite filter.
theorem
Ultrafilter.finite_sUnion_mem_iff
{α : Type u}
{f : Ultrafilter α}
{s : Set (Set α)}
(hs : s.Finite)
:
theorem
Ultrafilter.finite_biUnion_mem_iff
{α : Type u}
{β : Type v}
{f : Ultrafilter α}
{is : Set β}
{s : β → Set α}
(his : is.Finite)
:
theorem
Ultrafilter.eq_pure_of_finite_mem
{α : Type u}
{f : Ultrafilter α}
{s : Set α}
(h : s.Finite)
(h' : s ∈ f)
:
theorem
Ultrafilter.le_cofinite_or_eq_pure
{α : Type u}
(f : Ultrafilter α)
:
↑f ≤ Filter.cofinite ∨ ∃ (a : α), f = pure a
The ultrafilter extending the cofinite filter.
Equations
Instances For
theorem
Filter.nmem_hyperfilter_of_finite
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
s ∉ hyperfilter α
theorem
Set.Finite.nmem_hyperfilter
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
s ∉ Filter.hyperfilter α
Alias of Filter.nmem_hyperfilter_of_finite
.
theorem
Filter.compl_mem_hyperfilter_of_finite
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
sᶜ ∈ hyperfilter α
theorem
Set.Finite.compl_mem_hyperfilter
{α : Type u}
[Infinite α]
{s : Set α}
(hf : s.Finite)
:
sᶜ ∈ Filter.hyperfilter α
Alias of Filter.compl_mem_hyperfilter_of_finite
.
theorem
Filter.mem_hyperfilter_of_finite_compl
{α : Type u}
[Infinite α]
{s : Set α}
(hf : sᶜ.Finite)
:
s ∈ hyperfilter α