The lexicographic order on intervals #
This order is compatible with the inclusion ordering, but is total.
Under this ordering, [(3, 3), (2, 2), (2, 3), (1, 1), (1, 2), (1, 3)]
is sorted.
Equations
- NonemptyInterval.instLELex = { le := fun (x y : Lex (NonemptyInterval α)) => toLex (ofLex x).toDualProd ≤ toLex (ofLex y).toDualProd }
Equations
- NonemptyInterval.instLTLex = { lt := fun (x y : Lex (NonemptyInterval α)) => toLex (ofLex x).toDualProd < toLex (ofLex y).toDualProd }
instance
NonemptyInterval.instDecidableLELexOfDecidableEqOfDecidableLT
{α : Type u_1}
[LT α]
[LE α]
[DecidableEq α]
[DecidableLT α]
[DecidableLE α]
:
DecidableLE (Lex (NonemptyInterval α))
instance
NonemptyInterval.instDecidableLTLexOfDecidableEq
{α : Type u_1}
[LT α]
[LE α]
[DecidableEq α]
[DecidableLT α]
:
DecidableLT (Lex (NonemptyInterval α))
instance
NonemptyInterval.instPreorderLex
{α : Type u_1}
[Preorder α]
:
Preorder (Lex (NonemptyInterval α))
Equations
- NonemptyInterval.instPreorderLex = { toLE := NonemptyInterval.instLELex, toLT := NonemptyInterval.instLTLex, le_refl := ⋯, le_trans := ⋯, lt_iff_le_not_ge := ⋯ }
instance
NonemptyInterval.instPartialOrderLex
{α : Type u_1}
[PartialOrder α]
:
PartialOrder (Lex (NonemptyInterval α))
Equations
- NonemptyInterval.instPartialOrderLex = { toPreorder := NonemptyInterval.instPreorderLex, le_antisymm := ⋯ }
instance
NonemptyInterval.instLinearOrderLex
{α : Type u_1}
[LinearOrder α]
:
LinearOrder (Lex (NonemptyInterval α))
Equations
- One or more equations did not get rendered due to their size.