Intervals as initial segments #
We show that Set.Iic
and Set.Iio
are respectively initial and
principal segments, and that any principal segment f
is order
isomorphic to Set.Iio f.top
.
def
Set.initialSegIic
{α : Type u_1}
[Preorder α]
(j : α)
:
InitialSeg (fun (x1 x2 : ↑(Iic j)) => x1 < x2) fun (x1 x2 : α) => x1 < x2
Set.Iic j
is an initial segment.
Equations
Instances For
@[simp]
def
Set.principalSegIio
{α : Type u_1}
[Preorder α]
(j : α)
:
PrincipalSeg (fun (x1 x2 : ↑(Iio j)) => x1 < x2) fun (x1 x2 : α) => x1 < x2
Set.Iio j
is a principal segment.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.initialSegIicIicOfLE_toFun_coe
{α : Type u_1}
[Preorder α]
{i j : α}
(h : i ≤ j)
(x✝ : ↑(Iic i))
:
@[simp]
@[simp]
theorem
Set.principalSegIioIicOfLE_toRelEmbedding
{α : Type u_1}
[Preorder α]
{i j : α}
(h : i ≤ j)
(k : ↑(Iio i))
:
noncomputable def
PrincipalSeg.orderIsoIio
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : PrincipalSeg (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : β) => x1 < x2)
:
If f : α <i β
is a principal segment, this is the induced order
isomorphism α ≃o Set.Iio f.top
.
Equations
- f.orderIsoIio = { toEquiv := Equiv.ofBijective (fun (a : α) => ⟨f.toRelEmbedding a, ⋯⟩) ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
PrincipalSeg.orderIsoIio_apply_coe
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : PrincipalSeg (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : β) => x1 < x2)
(a : α)
: