Successors in intervals #
If j
is an element of a partially ordered set equipped
with a successor function, then for any element i : Set.Iic j
which is not the maximum, we have ↑(Order.succ i) = Order.succ ↑i
.
theorem
Set.Iic.coe_succ_of_not_isMax
{J : Type u_1}
[PartialOrder J]
[SuccOrder J]
{j : J}
{i : ↑(Iic j)}
(hi : ¬IsMax i)
:
theorem
Set.Iic.succ_eq_of_not_isMax
{J : Type u_1}
[PartialOrder J]
[SuccOrder J]
{j : J}
{i : ↑(Iic j)}
(hi : ¬IsMax i)
:
theorem
Set.Ici.coe_pred_of_not_isMin
{J : Type u_1}
[PartialOrder J]
[PredOrder J]
{j : J}
{i : ↑(Ici j)}
(hi : ¬IsMin i)
:
theorem
Set.Ici.pred_eq_of_not_isMin
{J : Type u_1}
[PartialOrder J]
[PredOrder J]
{j : J}
{i : ↑(Ici j)}
(hi : ¬IsMin i)
: