Documentation

Mathlib.Order.Monotone.MonovaryOrder

Interpreting monovarying functions as monotone functions #

This file proves that monovarying functions to linear orders can be made simultaneously monotone by setting the correct order on their shared indexing type.

def MonovaryOrder {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] (f : ια) (g : ιβ) (i j : ι) :

If f : ι → α and g : ι → β are monovarying, then MonovaryOrder f g is a linear order on ι that makes f and g simultaneously monotone. We define i < j if f i < f j, or if f i = f j and g i < g j, breaking ties arbitrarily.

Equations
Instances For
    instance instIsStrictTotalOrderMonovaryOrder {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] (f : ια) (g : ιβ) :
    theorem monovaryOn_iff_exists_monotoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    MonovaryOn f g s ∃ (x : LinearOrder ι), MonotoneOn f s MonotoneOn g s
    theorem antivaryOn_iff_exists_monotoneOn_antitoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    AntivaryOn f g s ∃ (x : LinearOrder ι), MonotoneOn f s AntitoneOn g s
    theorem monovaryOn_iff_exists_antitoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    MonovaryOn f g s ∃ (x : LinearOrder ι), AntitoneOn f s AntitoneOn g s
    theorem antivaryOn_iff_exists_antitoneOn_monotoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    AntivaryOn f g s ∃ (x : LinearOrder ι), AntitoneOn f s MonotoneOn g s
    theorem monovary_iff_exists_monotone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    theorem monovary_iff_exists_antitone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    theorem antivary_iff_exists_monotone_antitone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    theorem antivary_iff_exists_antitone_monotone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    theorem MonovaryOn.exists_monotoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    MonovaryOn f g s∃ (x : LinearOrder ι), MonotoneOn f s MonotoneOn g s

    Alias of the forward direction of monovaryOn_iff_exists_monotoneOn.

    theorem MonovaryOn.exists_antitoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    MonovaryOn f g s∃ (x : LinearOrder ι), AntitoneOn f s AntitoneOn g s

    Alias of the forward direction of monovaryOn_iff_exists_antitoneOn.

    theorem AntivaryOn.exists_monotoneOn_antitoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    AntivaryOn f g s∃ (x : LinearOrder ι), MonotoneOn f s AntitoneOn g s

    Alias of the forward direction of antivaryOn_iff_exists_monotoneOn_antitoneOn.

    theorem AntivaryOn.exists_antitoneOn_monotoneOn {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} {s : Set ι} :
    AntivaryOn f g s∃ (x : LinearOrder ι), AntitoneOn f s MonotoneOn g s

    Alias of the forward direction of antivaryOn_iff_exists_antitoneOn_monotoneOn.

    theorem Monovary.exists_monotone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    Monovary f g∃ (x : LinearOrder ι), Monotone f Monotone g

    Alias of the forward direction of monovary_iff_exists_monotone.

    theorem Monovary.exists_antitone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    Monovary f g∃ (x : LinearOrder ι), Antitone f Antitone g

    Alias of the forward direction of monovary_iff_exists_antitone.

    theorem Antivary.exists_monotone_antitone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    Antivary f g∃ (x : LinearOrder ι), Monotone f Antitone g

    Alias of the forward direction of antivary_iff_exists_monotone_antitone.

    theorem Antivary.exists_antitone_monotone {ι : Type u_1} {α : Type u_3} {β : Type u_4} [LinearOrder α] [LinearOrder β] {f : ια} {g : ιβ} :
    Antivary f g∃ (x : LinearOrder ι), Antitone f Monotone g

    Alias of the forward direction of antivary_iff_exists_antitone_monotone.