Documentation
Mathlib
.
Order
.
Part
Search
return to top
source
Imports
Init
Mathlib.Data.Part
Mathlib.Tactic.Common
Mathlib.Order.Hom.Basic
Imported by
Monotone
.
partBind
Antitone
.
partBind
Monotone
.
partMap
Antitone
.
partMap
Monotone
.
partSeq
Antitone
.
partSeq
OrderHom
.
partBind
OrderHom
.
partBind_coe
Monotonicity of monadic operations on
Part
#
source
theorem
Monotone
.
partBind
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
{f :
α
→
Part
β
}
{g :
α
→
β
→
Part
γ
}
(hf :
Monotone
f
)
(hg :
Monotone
g
)
:
Monotone
fun (
x
:
α
) =>
(
f
x
)
.
bind
(
g
x
)
source
theorem
Antitone
.
partBind
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
{f :
α
→
Part
β
}
{g :
α
→
β
→
Part
γ
}
(hf :
Antitone
f
)
(hg :
Antitone
g
)
:
Antitone
fun (
x
:
α
) =>
(
f
x
)
.
bind
(
g
x
)
source
theorem
Monotone
.
partMap
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
{f :
β
→
γ
}
{g :
α
→
Part
β
}
(hg :
Monotone
g
)
:
Monotone
fun (
x
:
α
) =>
Part.map
f
(
g
x
)
source
theorem
Antitone
.
partMap
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
{f :
β
→
γ
}
{g :
α
→
Part
β
}
(hg :
Antitone
g
)
:
Antitone
fun (
x
:
α
) =>
Part.map
f
(
g
x
)
source
theorem
Monotone
.
partSeq
{α :
Type
u_1}
[
Preorder
α
]
{β γ :
Type
u_4}
{f :
α
→
Part
(
β
→
γ
)
}
{g :
α
→
Part
β
}
(hf :
Monotone
f
)
(hg :
Monotone
g
)
:
Monotone
fun (
x
:
α
) =>
f
x
<*>
g
x
source
theorem
Antitone
.
partSeq
{α :
Type
u_1}
[
Preorder
α
]
{β γ :
Type
u_4}
{f :
α
→
Part
(
β
→
γ
)
}
{g :
α
→
Part
β
}
(hf :
Antitone
f
)
(hg :
Antitone
g
)
:
Antitone
fun (
x
:
α
) =>
f
x
<*>
g
x
source
def
OrderHom
.
partBind
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
(f :
α
→o
Part
β
)
(g :
α
→o
β
→
Part
γ
)
:
α
→o
Part
γ
Part.bind
as a monotone function
Equations
f
.
partBind
g
=
{
toFun
:=
fun (
x
:
α
) =>
(
f
x
)
.
bind
(
g
x
)
,
monotone'
:=
⋯
}
Instances For
source
@[simp]
theorem
OrderHom
.
partBind_coe
{α :
Type
u_1}
{β :
Type
u_2}
{γ :
Type
u_3}
[
Preorder
α
]
(f :
α
→o
Part
β
)
(g :
α
→o
β
→
Part
γ
)
(x :
α
)
:
(
f
.
partBind
g
)
x
=
(
f
x
)
.
bind
(
g
x
)