Documentation

Mathlib.Order.ScottContinuity.Prod

Scott continuity on product spaces #

Main result #

theorem ScottContinuousOn.fromProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] [Preorder γ] {f : α × βγ} {D : Set (Set (α × β))} (h₁ : ∀ (a : α), ScottContinuousOn ((fun (d : Set (α × β)) => Prod.snd '' d) '' D) fun (b : β) => f (a, b)) (h₂ : ∀ (b : β), ScottContinuousOn ((fun (d : Set (α × β)) => Prod.fst '' d) '' D) fun (a : α) => f (a, b)) (h₁' : ∀ (a : α), Monotone fun (b : β) => f (a, b)) (h₂' : ∀ (b : β), Monotone fun (a : α) => f (a, b)) :

If is Scott continuous on a product space if it is Scott continuous and monotone in each variable

theorem ScottContinuous.fromProd {α : Type u_1} {β : Type u_2} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] {f : α × βγ} (h₁ : ∀ (a : α), ScottContinuous fun (b : β) => f (a, b)) (h₂ : ∀ (b : β), ScottContinuous fun (a : α) => f (a, b)) :
theorem ScottContinuous.prod {α : Type u_1} {β : Type u_2} {α' : Type u_4} {β' : Type u_5} [Preorder α] [Preorder β] [Preorder α'] [Preorder β'] {f : αα'} {g : ββ'} (hf : ScottContinuous f) (hg : ScottContinuous g) :