Documentation

Mathlib.Order.Shrink

Order instances on Shrink #

If α : Type v is u-small, we transport various order related instances on α to Shrink.{u} α.

noncomputable def orderIsoShrink (α : Type v) [Small.{u, v} α] [Preorder α] :

The order isomorphism α ≃o Shrink.{u} α.

Equations
Instances For
    @[simp]
    theorem orderIsoShrink_apply {α : Type v} [Small.{u, v} α] [Preorder α] (a : α) :
    @[simp]
    noncomputable instance instLinearOrderShrink {α : Type v} [Small.{u, v} α] [LinearOrder α] :
    Equations
    • One or more equations did not get rendered due to their size.
    noncomputable instance instBotShrink {α : Type v} [Small.{u, v} α] [Bot α] :
    Equations
    @[simp]
    theorem equivShrink_bot {α : Type v} [Small.{u, v} α] [Bot α] :
    @[simp]
    theorem equivShrink_symm_bot {α : Type v} [Small.{u, v} α] [Bot α] :
    noncomputable instance instTopShrink {α : Type v} [Small.{u, v} α] [Top α] :
    Equations
    @[simp]
    theorem equivShrink_top {α : Type v} [Small.{u, v} α] [Top α] :
    @[simp]
    theorem equivShrink_symm_top {α : Type v} [Small.{u, v} α] [Top α] :
    noncomputable instance instOrderBotShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderBot α] :
    Equations
    noncomputable instance instOrderTopShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderTop α] :
    Equations