Upper and lower set product #
The Cartesian product of sets carries over to upper and lower sets in a natural way. This file
defines said product over the types UpperSet
and LowerSet
and proves some of its properties.
Notation #
×ˢ
is notation forUpperSet.prod
/LowerSet.prod
.
theorem
IsUpperSet.prod
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{s : Set α}
{t : Set β}
(hs : IsUpperSet s)
(ht : IsUpperSet t)
:
IsUpperSet (s ×ˢ t)
theorem
IsLowerSet.prod
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{s : Set α}
{t : Set β}
(hs : IsLowerSet s)
(ht : IsLowerSet t)
:
IsLowerSet (s ×ˢ t)
Equations
- UpperSet.instSProd = { sprod := UpperSet.prod }
Equations
- LowerSet.instSProd = { sprod := LowerSet.prod }