Documentation

Mathlib.Probability.Distributions.Cauchy

Cauchy Distribution over ℝ #

Define the Cauchy distribution with location parameter x₀ and scale parameter γ.

Note that we use "location" and "scale" to refer to these parameters in theorem names.

Main definition #

noncomputable def Probability.cauchyPDFReal (x₀ : ) (γ : NNReal) (x : ) :

The pdf of the cauchy distribution depending on its location x₀ and scale γ parameters.

Equations
Instances For
    theorem Probability.cauchyPDFReal_def (x₀ : ) (γ : NNReal) (x : ) :
    cauchyPDFReal x₀ γ x = Real.pi⁻¹ * γ * ((x - x₀) ^ 2 + γ ^ 2)⁻¹
    theorem Probability.cauchyPDFReal_def' (x₀ : ) (γ : NNReal) (x : ) :
    cauchyPDFReal x₀ γ x = Real.pi⁻¹ * γ⁻¹ * (1 + ((x - x₀) / γ) ^ 2)⁻¹
    noncomputable def Probability.cauchyPDF (x₀ : ) (γ : NNReal) (x : ) :

    The pdf of the gamma distribution, as a function valued in ℝ≥0∞.

    Equations
    Instances For
      @[simp]
      theorem Probability.cauchyPDF_scale_zero (x₀ : ) :
      cauchyPDF x₀ 0 = 0
      theorem Probability.cauchyPDF_def (x₀ : ) (γ : NNReal) (x : ) :
      cauchyPDF x₀ γ x = ENNReal.ofReal (cauchyPDFReal x₀ γ x)
      theorem Probability.cauchyPDF_pos (x₀ : ) {γ : NNReal} ( : γ 0) (x : ) :
      0 < cauchyPDFReal x₀ γ x

      cauchyPDFReal is positive for γ > 0.

      theorem Probability.integral_cauchyPDFReal (x₀ : ) {γ : NNReal} ( : γ 0) :
      (x : ), cauchyPDFReal x₀ γ x = 1
      @[simp]
      theorem Probability.lintegral_cauchyPDF_eq_one (x₀ : ) {γ : NNReal} ( : γ 0) :
      ∫⁻ (x : ), cauchyPDF x₀ γ x = 1

      The pdf of the cauchy distribution integrates to 1.

      noncomputable def Probability.cauchyMeasure (x₀ : ) (γ : NNReal) :

      A Cauchy distribution on with location parameter x₀ and scale parameter γ.

      Equations
      Instances For