Documentation

Mathlib.Probability.Distributions.Exponential

Exponential distributions over ℝ #

Define the Exponential measure over the reals.

Main definitions #

Main results #

noncomputable def ProbabilityTheory.exponentialPDFReal (r x : ) :

The pdf of the exponential distribution depending on its rate

Equations
Instances For
    noncomputable def ProbabilityTheory.exponentialPDF (r x : ) :

    The pdf of the exponential distribution, as a function valued in ℝ≥0∞

    Equations
    Instances For
      theorem ProbabilityTheory.exponentialPDF_eq (r x : ) :
      exponentialPDF r x = ENNReal.ofReal (if 0 x then r * Real.exp (-(r * x)) else 0)

      The Lebesgue integral of the exponential pdf over nonpositive reals equals 0

      The exponential pdf is measurable.

      theorem ProbabilityTheory.exponentialPDFReal_pos {x r : } (hr : 0 < r) (hx : 0 < x) :

      The exponential pdf is positive for all positive reals

      The exponential pdf is nonnegative

      @[simp]

      The pdf of the exponential distribution integrates to 1

      Measure defined by the exponential distribution

      Equations
      Instances For
        theorem ProbabilityTheory.hasDerivAt_neg_exp_mul_exp {r x : } :
        HasDerivAt (fun (a : ) => -Real.exp (-(r * a))) (r * Real.exp (-(r * x))) x

        A negative exponential function is integrable on intervals in R≥0

        theorem ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv {r : } (hr : 0 < r) (x : ) :
        ∫⁻ (y : ) in Set.Iic x, exponentialPDF r y = ENNReal.ofReal (if 0 x then 1 - Real.exp (-(r * x)) else 0)
        theorem ProbabilityTheory.exponentialCDFReal_eq {r : } (hr : 0 < r) (x : ) :
        (exponentialCDFReal r) x = if 0 x then 1 - Real.exp (-(r * x)) else 0

        The CDF of the exponential distribution equals 1 - exp (-(r * x))