Documentation

Mathlib.Probability.Independence.Kernel.IndepFun

Independence of random variables with respect to a kernel and a measure #

A family of random variables is independent if the corresponding σ-algebras are independent. Independence of families of sets and σ-algebras is covered in the Indep file. This file deals with independence of random variables specifically.

Note that we define independence with respect to a kernel and a measure. This notion of independence is a generalization of both independence and conditional independence. For conditional independence, κ is the conditional kernel ProbabilityTheory.condExpKernel and μ is the ambient measure. For (non-conditional) independence, κ = Kernel.const Unit μ and the measure is the Dirac measure on Unit.

Main definition #

def ProbabilityTheory.Kernel.iIndepFun {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {β : ιType u_8} [m : (x : ι) → MeasurableSpace (β x)] (f : (x : ι) → Ωβ x) (κ : Kernel α Ω) (μ : MeasureTheory.Measure α := by volume_tac) :

A family of functions defined on the same space Ω and taking values in possibly different spaces, each with a measurable space structure, is independent if the family of measurable space structures they generate on Ω is independent. For a function g with codomain having measurable space structure m, the generated measurable space structure is MeasurableSpace.comap g m.

Equations
Instances For
    def ProbabilityTheory.Kernel.IndepFun {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {γ : Type u_6} { : MeasurableSpace α} { : MeasurableSpace Ω} [ : MeasurableSpace β] [ : MeasurableSpace γ] (f : Ωβ) (g : Ωγ) (κ : Kernel α Ω) (μ : MeasureTheory.Measure α := by volume_tac) :

    Two functions are independent if the two measurable space structures they generate are independent. For a function f with codomain having measurable space structure m, the generated measurable space structure is MeasurableSpace.comap f m.

    Equations
    Instances For
      @[simp]
      theorem ProbabilityTheory.Kernel.iIndepFun_zero_right {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {β : ιType u_10} {m : (x : ι) → MeasurableSpace (β x)} {f : (x : ι) → Ωβ x} :
      iIndepFun f κ 0
      @[simp]
      theorem ProbabilityTheory.Kernel.indepFun_zero_right {α : Type u_1} {Ω : Type u_2} {γ : Type u_6} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {β : Type u_10} [MeasurableSpace β] [MeasurableSpace γ] {f : Ωβ} {g : Ωγ} :
      IndepFun f g κ 0
      @[simp]
      theorem ProbabilityTheory.Kernel.indepFun_zero_left {α : Type u_1} {Ω : Type u_2} {γ : Type u_6} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure α} {β : Type u_10} [MeasurableSpace β] [MeasurableSpace γ] {f : Ωβ} {g : Ωγ} :
      IndepFun f g 0 μ
      theorem ProbabilityTheory.Kernel.iIndepFun_congr {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ η : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_10} {m : (x : ι) → MeasurableSpace (β x)} {f : (x : ι) → Ωβ x} (h : κ =ᵐ[μ] η) :
      iIndepFun f κ μ iIndepFun f η μ
      theorem ProbabilityTheory.Kernel.iIndepFun.congr {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ η : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_10} {m : (x : ι) → MeasurableSpace (β x)} {f : (x : ι) → Ωβ x} (h : κ =ᵐ[μ] η) :
      iIndepFun f κ μiIndepFun f η μ

      Alias of the forward direction of ProbabilityTheory.Kernel.iIndepFun_congr.

      theorem ProbabilityTheory.Kernel.indepFun_congr {α : Type u_1} {Ω : Type u_2} {γ : Type u_6} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ η : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_10} [MeasurableSpace β] [MeasurableSpace γ] {f : Ωβ} {g : Ωγ} (h : κ =ᵐ[μ] η) :
      IndepFun f g κ μ IndepFun f g η μ
      theorem ProbabilityTheory.Kernel.IndepFun.congr {α : Type u_1} {Ω : Type u_2} {γ : Type u_6} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ η : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_10} [MeasurableSpace β] [MeasurableSpace γ] {f : Ωβ} {g : Ωγ} (h : κ =ᵐ[μ] η) :
      IndepFun f g κ μIndepFun f g η μ

      Alias of the forward direction of ProbabilityTheory.Kernel.indepFun_congr.

      @[simp]
      theorem ProbabilityTheory.Kernel.iIndepFun.of_subsingleton {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} [Subsingleton ι] {β : ιType u_10} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} [IsMarkovKernel κ] :
      iIndepFun f κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.iIndep {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : (x : ι) → Ωβ x} (hf : iIndepFun f κ μ) :
      iIndep (fun (x : ι) => MeasurableSpace.comap (f x) ( x)) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.ae_isProbabilityMeasure {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : (x : ι) → Ωβ x} (h : iIndepFun f κ μ) :
      theorem ProbabilityTheory.Kernel.iIndepFun.meas_biInter {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {s : ιSet Ω} {S : Finset ι} {f : (x : ι) → Ωβ x} (hf : iIndepFun f κ μ) (hs : iS, MeasurableSet (s i)) :
      ∀ᵐ (a : α) μ, (κ a) (⋂ iS, s i) = iS, (κ a) (s i)
      theorem ProbabilityTheory.Kernel.iIndepFun.meas_iInter {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {s : ιSet Ω} {f : (x : ι) → Ωβ x} [Fintype ι] (hf : iIndepFun f κ μ) (hs : ∀ (i : ι), MeasurableSet (s i)) :
      ∀ᵐ (a : α) μ, (κ a) (⋂ (i : ι), s i) = i : ι, (κ a) (s i)
      theorem ProbabilityTheory.Kernel.IndepFun.meas_inter {α : Type u_1} {Ω : Type u_2} {γ : Type u_6} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_10} [ : MeasurableSpace β] [ : MeasurableSpace γ] {f : Ωβ} {g : Ωγ} (hfg : IndepFun f g κ μ) {s t : Set Ω} (hs : MeasurableSet s) (ht : MeasurableSet t) :
      ∀ᵐ (a : α) μ, (κ a) (s t) = (κ a) s * (κ a) t
      theorem ProbabilityTheory.Kernel.iIndepFun.precomp {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : (x : ι) → Ωβ x} {ι' : Type u_9} {g : ι'ι} (hg : Function.Injective g) (h : iIndepFun f κ μ) :
      iIndepFun (fun (i : ι') => f (g i)) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.of_precomp {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : (x : ι) → Ωβ x} {ι' : Type u_9} {g : ι'ι} (hg : Function.Surjective g) (h : iIndepFun (fun (i : ι') => f (g i)) κ μ) :
      iIndepFun f κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun_precomp_of_bijective {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : (x : ι) → Ωβ x} {ι' : Type u_9} {g : ι'ι} (hg : Function.Bijective g) :
      iIndepFun (fun (i : ι') => f (g i)) κ μ iIndepFun f κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (x : ι) → MeasurableSpace (β x)} {f : (i : ι) → Ωβ i} (hf_Indep : iIndepFun f κ μ) {i j : ι} (hij : i j) :
      IndepFun (f i) (f j) κ μ
      theorem ProbabilityTheory.Kernel.indepFun_iff_measure_inter_preimage_eq_mul {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} :
      IndepFun f g κ μ ∀ (s : Set β) (t : Set β'), MeasurableSet sMeasurableSet t∀ᵐ (a : α) μ, (κ a) (f ⁻¹' s g ⁻¹' t) = (κ a) (f ⁻¹' s) * (κ a) (g ⁻¹' t)
      theorem ProbabilityTheory.Kernel.IndepFun.measure_inter_preimage_eq_mul {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} :
      IndepFun f g κ μ∀ (s : Set β) (t : Set β'), MeasurableSet sMeasurableSet t∀ᵐ (a : α) μ, (κ a) (f ⁻¹' s g ⁻¹' t) = (κ a) (f ⁻¹' s) * (κ a) (g ⁻¹' t)

      Alias of the forward direction of ProbabilityTheory.Kernel.indepFun_iff_measure_inter_preimage_eq_mul.

      theorem ProbabilityTheory.Kernel.iIndepFun_iff_measure_inter_preimage_eq_mul {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {ι : Type u_8} {β : ιType u_9} (m : (x : ι) → MeasurableSpace (β x)) (f : (i : ι) → Ωβ i) :
      iIndepFun f κ μ ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ iS, MeasurableSet (sets i))∀ᵐ (a : α) μ, (κ a) (⋂ iS, f i ⁻¹' sets i) = iS, (κ a) (f i ⁻¹' sets i)
      theorem ProbabilityTheory.Kernel.iIndepFun.measure_inter_preimage_eq_mul {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {ι : Type u_8} {β : ιType u_9} (m : (x : ι) → MeasurableSpace (β x)) (f : (i : ι) → Ωβ i) :
      iIndepFun f κ μ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)} (_H : iS, MeasurableSet (sets i)), ∀ᵐ (a : α) μ, (κ a) (⋂ iS, f i ⁻¹' sets i) = iS, (κ a) (f i ⁻¹' sets i)

      Alias of the forward direction of ProbabilityTheory.Kernel.iIndepFun_iff_measure_inter_preimage_eq_mul.

      theorem ProbabilityTheory.Kernel.iIndepFun.congr' {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {f g : (i : ι) → Ωβ i} (hf : iIndepFun f κ μ) (h : ∀ (i : ι), ∀ᵐ (a : α) μ, f i =ᵐ[κ a] g i) :
      iIndepFun g κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun_congr' {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} { : (i : ι) → MeasurableSpace (β i)} {f g : (i : ι) → Ωβ i} (h : ∀ (i : ι), ∀ᵐ (a : α) μ, f i =ᵐ[κ a] g i) :
      iIndepFun f κ μ iIndepFun g κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.comp {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {γ : ιType u_9} { : (i : ι) → MeasurableSpace (β i)} { : (i : ι) → MeasurableSpace (γ i)} {f : (i : ι) → Ωβ i} (h : iIndepFun f κ μ) (g : (i : ι) → β iγ i) (hg : ∀ (i : ι), Measurable (g i)) :
      iIndepFun (fun (i : ι) => g i f i) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.comp₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {γ : ιType u_9} { : (i : ι) → MeasurableSpace (β i)} { : (i : ι) → MeasurableSpace (γ i)} {f : (i : ι) → Ωβ i} (h : iIndepFun f κ μ) (g : (i : ι) → β iγ i) (hf : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (hg : ∀ (i : ι), AEMeasurable (g i) (MeasureTheory.Measure.map (f i) (μ.bind κ))) :
      iIndepFun (fun (i : ι) => g i f i) κ μ
      theorem ProbabilityTheory.Kernel.indepFun_iff_indepSet_preimage {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [IsZeroOrMarkovKernel κ] (hf : Measurable f) (hg : Measurable g) :
      IndepFun f g κ μ ∀ (s : Set β) (t : Set β'), MeasurableSet sMeasurableSet tIndepSet (f ⁻¹' s) (g ⁻¹' t) κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.symm {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} {x✝ : MeasurableSpace β} {x✝¹ : MeasurableSpace β'} (hfg : IndepFun f g κ μ) :
      IndepFun g f κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.congr' {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {f' : Ωβ} {g' : Ωβ'} (hfg : IndepFun f g κ μ) (hf : ∀ᵐ (a : α) μ, f =ᵐ[κ a] f') (hg : ∀ᵐ (a : α) μ, g =ᵐ[κ a] g') :
      IndepFun f' g' κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.comp {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} {γ : Type u_6} {γ' : Type u_7} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} { : MeasurableSpace γ} {mγ' : MeasurableSpace γ'} {φ : βγ} {ψ : β'γ'} (hfg : IndepFun f g κ μ) ( : Measurable φ) ( : Measurable ψ) :
      IndepFun (φ f) (ψ g) κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.comp₀ {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} {γ : Type u_6} {γ' : Type u_7} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} { : MeasurableSpace γ} {mγ' : MeasurableSpace γ'} {φ : βγ} {ψ : β'γ'} (hfg : IndepFun f g κ μ) (hf : AEMeasurable f (μ.bind κ)) (hg : AEMeasurable g (μ.bind κ)) ( : AEMeasurable φ (MeasureTheory.Measure.map f (μ.bind κ))) ( : AEMeasurable ψ (MeasureTheory.Measure.map g (μ.bind κ))) :
      IndepFun (φ f) (ψ g) κ μ
      theorem ProbabilityTheory.Kernel.indepFun_const_left {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [IsZeroOrMarkovKernel κ] (c : β') (X : Ωβ) :
      IndepFun (fun (x : Ω) => c) X κ μ
      theorem ProbabilityTheory.Kernel.indepFun_const_right {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [IsZeroOrMarkovKernel κ] (X : Ωβ) (c : β') :
      IndepFun X (fun (x : Ω) => c) κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.neg_right {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} [Neg β'] [MeasurableNeg β'] (hfg : IndepFun f g κ μ) :
      IndepFun f (-g) κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.neg_left {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {β' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {f : Ωβ} {g : Ωβ'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} [Neg β] [MeasurableNeg β] (hfg : IndepFun f g κ μ) :
      IndepFun (-f) g κ μ
      theorem ProbabilityTheory.Kernel.indepFun_iff_compProd_map_prod_eq_compProd_prod_map_map {α : Type u_1} {Ω : Type u_2} {β : Type u_4} {γ : Type u_6} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasureTheory.IsFiniteMeasure μ] [IsFiniteKernel κ] {f : Ωβ} {g : Ωγ} (hf : Measurable f) (hg : Measurable g) :
      IndepFun f g κ μ μ.compProd (κ.map fun (ω : Ω) => (f ω, g ω)) = μ.compProd ((κ.map f).prod (κ.map g))

      Two random variables f, g are independent given a kernel κ and a measure μ iff μ ⊗ₘ κ.map (fun ω ↦ (f ω, g ω)) = μ ⊗ₘ (κ.map f ×ₖ κ.map g).

      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (S T : Finset ι) (hST : Disjoint S T) (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) :
      IndepFun (fun (a : Ω) (i : S) => f (↑i) a) (fun (a : Ω) (i : T) => f (↑i) a) κ μ

      If f is a family of mutually independent random variables (iIndepFun m f μ) and S, T are two disjoint finite index sets, then the tuple formed by f i for i ∈ S is independent of the tuple (f i)_i for i ∈ T.

      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (S T : Finset ι) (hST : Disjoint S T) (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) :
      IndepFun (fun (a : Ω) (i : S) => f (↑i) a) (fun (a : Ω) (i : T) => f (↑i) a) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (fun (a : Ω) => (f i a, f j a)) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (fun (a : Ω) => (f i a, f j a)) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk_prodMk {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (fun (a : Ω) => (f i a, f j a)) (fun (a : Ω) => (f k a, f l a)) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prodMk_prodMk₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (fun (a : Ω) => (f i a, f j a)) (fun (a : Ω) => (f k a, f l a)) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_left {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i * f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_left {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i + f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_left₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i * f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_left₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i + f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_right {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j * f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_right {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j + f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_right₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j * f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_right₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j + f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_mul {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i * f j) (f k * f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_add {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i + f j) (f k + f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_mul_mul₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i * f j) (f k * f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_add_mul₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i + f j) (f k + f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_left {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i / f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_left {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i - f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_left₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i / f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_left₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hik : i k) (hjk : j k) :
      IndepFun (f i - f j) (f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_right {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j / f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_right {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j - f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_right₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j / f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_right₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k : ι) (hij : i j) (hik : i k) :
      IndepFun (f i) (f j - f k) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_div {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i / f j) (f k / f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_sub {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i - f j) (f k - f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_div_div₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i / f j) (f k / f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sub_div₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
      IndepFun (f i - f j) (f k - f l) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∏ js, f j) (f i) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∑ js, f j) (f i) κ μ
      @[deprecated ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem (since := "2025-05-23")]
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_not_mem {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∑ js, f j) (f i) κ μ

      Alias of ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem.

      @[deprecated ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem (since := "2025-05-23")]
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_not_mem {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∏ js, f j) (f i) κ μ

      Alias of ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem.

      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∏ js, f j) (f i) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∑ js, f j) (f i) κ μ
      @[deprecated ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem₀ (since := "2025-05-23")]
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_not_mem₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∑ js, f j) (f i) κ μ

      Alias of ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_sum_of_notMem₀.

      @[deprecated ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem₀ (since := "2025-05-23")]
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_not_mem₀ {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ι), AEMeasurable (f i) (μ.bind κ)) {s : Finset ι} {i : ι} (hi : is) :
      IndepFun (∏ js, f j) (f i) κ μ

      Alias of ProbabilityTheory.Kernel.iIndepFun.indepFun_finset_prod_of_notMem₀.

      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prod_range_succ {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : Ωβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ), Measurable (f i)) (n : ) :
      IndepFun (∏ jFinset.range n, f j) (f n) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sum_range_succ {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : Ωβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ), Measurable (f i)) (n : ) :
      IndepFun (∑ jFinset.range n, f j) (f n) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_prod_range_succ₀ {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : Ωβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ), AEMeasurable (f i) (μ.bind κ)) (n : ) :
      IndepFun (∏ jFinset.range n, f j) (f n) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.indepFun_sum_range_succ₀ {α : Type u_1} {Ω : Type u_2} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} {β : Type u_8} {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : Ωβ} (hf_Indep : iIndepFun f κ μ) (hf_meas : ∀ (i : ), AEMeasurable (f i) (μ.bind κ)) (n : ) :
      IndepFun (∑ jFinset.range n, f j) (f n) κ μ
      theorem ProbabilityTheory.Kernel.iIndepSet.iIndepFun_indicator {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : Type u_4} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} [Zero β] [One β] {m : MeasurableSpace β} {s : ιSet Ω} (hs : iIndepSet s κ μ) :
      iIndepFun (fun (n : ι) => (s n).indicator fun ( : Ω) => 1) κ μ
      theorem ProbabilityTheory.Kernel.iIndepFun.cond_iInter {α : Type u_1} {Ω : Type u_2} {ι : Type u_3} {β : Type u_4} { : MeasurableSpace α} { : MeasurableSpace Ω} {κ : Kernel α Ω} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} {X : ιΩα} {Y : ιΩβ} {f : ιSet Ω} {t : ιSet β} {s : Finset ι} [Finite ι] (hY : ∀ (i : ι), Measurable (Y i)) (hindep : iIndepFun (fun (i : ι) (ω : Ω) => (X i ω, Y i ω)) κ μ) (hf : is, MeasurableSet (f i)) (hy : ∀ᵐ (a : α) μ, is, (κ a) (Y i ⁻¹' t i) 0) (ht : ∀ (i : ι), MeasurableSet (t i)) :
      ∀ᵐ (a : α) μ, (κ a)[is, f i | ⋂ (i : ι), Y i ⁻¹' t i] = is, (κ a)[f i | Y i ⁻¹' t i]

      The probability of an intersection of preimages conditioning on another intersection factors into a product.