Documentation

Mathlib.Probability.Independence.ZeroOne

Kolmogorov's 0-1 law #

Let s : ι → MeasurableSpace Ω be an independent sequence of sub-σ-algebras. Then any set which is measurable with respect to the tail σ-algebra limsup s atTop has probability 0 or 1.

Main statements #

theorem ProbabilityTheory.measure_eq_zero_or_one_or_top_of_indepSet_self {Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {t : Set Ω} (h_indep : ProbabilityTheory.IndepSet t t) :
μ t = 0 μ t = 1 μ t =
theorem ProbabilityTheory.indep_biSup_compl {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (t : Set ι) :
ProbabilityTheory.Indep (⨆ (n : ι) (_ : n t), s n) (⨆ (n : ι) (_ : n t), s n)

We prove a version of Kolmogorov's 0-1 law for the σ-algebra limsup s f where f is a filter for which we can define the following two functions:

For the example of f = atTop, we can take p = bddAbove and ns : ι → Set ι := fun i => Set.Iic i.

theorem ProbabilityTheory.indep_biSup_limsup {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} {p : Set ιProp} {f : Filter ι} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (hf : ∀ (t : Set ι), p tt f) {t : Set ι} (ht : p t) :
ProbabilityTheory.Indep (⨆ (n : ι) (_ : n t), s n) (Filter.limsup s f)
theorem ProbabilityTheory.indep_iSup_directed_limsup {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} {α : Type u_3} {p : Set ιProp} {f : Filter ι} {ns : αSet ι} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (hf : ∀ (t : Set ι), p tt f) (hns : Directed (fun x x_1 => x x_1) ns) (hnsp : (a : α) → p (ns a)) :
ProbabilityTheory.Indep (⨆ (a : α) (n : ι) (_ : n ns a), s n) (Filter.limsup s f)
theorem ProbabilityTheory.indep_iSup_limsup {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} {α : Type u_3} {p : Set ιProp} {f : Filter ι} {ns : αSet ι} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (hf : ∀ (t : Set ι), p tt f) (hns : Directed (fun x x_1 => x x_1) ns) (hnsp : (a : α) → p (ns a)) (hns_univ : ∀ (n : ι), a, n ns a) :
ProbabilityTheory.Indep (⨆ (n : ι), s n) (Filter.limsup s f)
theorem ProbabilityTheory.indep_limsup_self {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} {α : Type u_3} {p : Set ιProp} {f : Filter ι} {ns : αSet ι} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (hf : ∀ (t : Set ι), p tt f) (hns : Directed (fun x x_1 => x x_1) ns) (hnsp : (a : α) → p (ns a)) (hns_univ : ∀ (n : ι), a, n ns a) :
theorem ProbabilityTheory.measure_zero_or_one_of_measurableSet_limsup {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} {α : Type u_3} {p : Set ιProp} {f : Filter ι} {ns : αSet ι} (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) (hf : ∀ (t : Set ι), p tt f) (hns : Directed (fun x x_1 => x x_1) ns) (hnsp : (a : α) → p (ns a)) (hns_univ : ∀ (n : ι), a, n ns a) {t : Set Ω} (ht_tail : MeasurableSet t) :
μ t = 0 μ t = 1
theorem ProbabilityTheory.indep_limsup_atTop_self {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} [SemilatticeSup ι] [NoMaxOrder ι] [Nonempty ι] (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) :
ProbabilityTheory.Indep (Filter.limsup s Filter.atTop) (Filter.limsup s Filter.atTop)
theorem ProbabilityTheory.measure_zero_or_one_of_measurableSet_limsup_atTop {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} [SemilatticeSup ι] [NoMaxOrder ι] [Nonempty ι] (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) {t : Set Ω} (ht_tail : MeasurableSet t) :
μ t = 0 μ t = 1

Kolmogorov's 0-1 law : any event in the tail σ-algebra of an independent sequence of sub-σ-algebras has probability 0 or 1. The tail σ-algebra limsup s atTop is the same as ⋂ n, ⋃ i ≥ n, s i.

theorem ProbabilityTheory.indep_limsup_atBot_self {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} [SemilatticeInf ι] [NoMinOrder ι] [Nonempty ι] (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) :
ProbabilityTheory.Indep (Filter.limsup s Filter.atBot) (Filter.limsup s Filter.atBot)
theorem ProbabilityTheory.measure_zero_or_one_of_measurableSet_limsup_atBot {Ω : Type u_1} {ι : Type u_2} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {s : ιMeasurableSpace Ω} [SemilatticeInf ι] [NoMinOrder ι] [Nonempty ι] (h_le : ∀ (n : ι), s n m0) (h_indep : ProbabilityTheory.iIndep s) {t : Set Ω} (ht_tail : MeasurableSet t) :
μ t = 0 μ t = 1

Kolmogorov's 0-1 law : any event in the tail σ-algebra of an independent sequence of sub-σ-algebras has probability 0 or 1.