Moments and moment generating function #
Main definitions #
ProbabilityTheory.moment X p μ
:p
th moment of a real random variableX
with respect to measureμ
,μ[X^p]
ProbabilityTheory.centralMoment X p μ
:p
th central moment ofX
with respect to measureμ
,μ[(X - μ[X])^p]
ProbabilityTheory.mgf X μ t
: moment generating function ofX
with respect to measureμ
,μ[exp(t*X)]
ProbabilityTheory.cgf X μ t
: cumulant generating function, logarithm of the moment generating function
Main results #
ProbabilityTheory.IndepFun.mgf_add
: if two real random variablesX
andY
are independent and their mgfs are defined att
, thenmgf (X + Y) μ t = mgf X μ t * mgf Y μ t
ProbabilityTheory.IndepFun.cgf_add
: if two real random variablesX
andY
are independent and their cgfs are defined att
, thencgf (X + Y) μ t = cgf X μ t + cgf Y μ t
ProbabilityTheory.measure_ge_le_exp_cgf
andProbabilityTheory.measure_le_le_exp_cgf
: Chernoff bound on the upper (resp. lower) tail of a random variable. Fort
nonnegative such that the cgf exists,ℙ(ε ≤ X) ≤ exp(- t*ε + cgf X ℙ t)
. See alsoProbabilityTheory.measure_ge_le_exp_mul_mgf
andProbabilityTheory.measure_le_le_exp_mul_mgf
for versions of these results usingmgf
instead ofcgf
.
def
ProbabilityTheory.moment
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(p : ℕ)
(μ : MeasureTheory.Measure Ω)
:
Moment of a real random variable, μ[X ^ p]
.
Instances For
def
ProbabilityTheory.centralMoment
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(p : ℕ)
(μ : MeasureTheory.Measure Ω)
:
Central moment of a real random variable, μ[(X - μ[X]) ^ p]
.
Equations
Instances For
@[simp]
theorem
ProbabilityTheory.moment_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{p : ℕ}
{μ : MeasureTheory.Measure Ω}
(hp : p ≠ 0)
:
@[simp]
theorem
ProbabilityTheory.moment_zero_measure
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{p : ℕ}
:
@[simp]
theorem
ProbabilityTheory.centralMoment_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{p : ℕ}
{μ : MeasureTheory.Measure Ω}
(hp : p ≠ 0)
:
centralMoment 0 p μ = 0
@[simp]
theorem
ProbabilityTheory.centralMoment_zero_measure
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{p : ℕ}
:
centralMoment X p 0 = 0
theorem
ProbabilityTheory.centralMoment_one'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(h_int : MeasureTheory.Integrable X μ)
:
@[simp]
theorem
ProbabilityTheory.centralMoment_one
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
:
centralMoment X 1 μ = 0
theorem
ProbabilityTheory.centralMoment_two_eq_variance
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.Memℒp X 2 μ)
:
centralMoment X 2 μ = variance X μ
def
ProbabilityTheory.mgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
(t : ℝ)
:
Moment generating function of a real random variable X
: fun t => μ[exp(t*X)]
.
Instances For
def
ProbabilityTheory.cgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
(t : ℝ)
:
Cumulant generating function of a real random variable X
: fun t => log μ[exp(t*X)]
.
Equations
- ProbabilityTheory.cgf X μ t = Real.log (ProbabilityTheory.mgf X μ t)
Instances For
@[simp]
theorem
ProbabilityTheory.mgf_zero_fun
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
:
@[simp]
theorem
ProbabilityTheory.cgf_zero_fun
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
:
@[simp]
theorem
ProbabilityTheory.mgf_zero_measure
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{t : ℝ}
:
@[simp]
theorem
ProbabilityTheory.cgf_zero_measure
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{t : ℝ}
:
@[simp]
theorem
ProbabilityTheory.mgf_const'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(c : ℝ)
:
theorem
ProbabilityTheory.mgf_const
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(c : ℝ)
[MeasureTheory.IsProbabilityMeasure μ]
:
@[simp]
theorem
ProbabilityTheory.cgf_const'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hμ : μ ≠ 0)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.cgf_const
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.mgf_zero'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
theorem
ProbabilityTheory.mgf_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
:
theorem
ProbabilityTheory.cgf_zero'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.cgf_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
:
theorem
ProbabilityTheory.mgf_undef
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(hX : ¬MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.cgf_undef
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(hX : ¬MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.mgf_nonneg
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
:
theorem
ProbabilityTheory.mgf_pos'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(hμ : μ ≠ 0)
(h_int_X : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.mgf_pos
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsProbabilityMeasure μ]
(h_int_X : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.exp_cgf_of_neZero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[hμ : NeZero μ]
(hX : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.exp_cgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.mgf_id_map
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(hX : AEMeasurable X μ)
:
mgf id (MeasureTheory.Measure.map X μ) = mgf X μ
theorem
ProbabilityTheory.mgf_neg
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
:
theorem
ProbabilityTheory.cgf_neg
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
:
theorem
ProbabilityTheory.mgf_smul_left
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(α : ℝ)
:
theorem
ProbabilityTheory.mgf_const_add
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(α : ℝ)
:
theorem
ProbabilityTheory.mgf_add_const
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
(α : ℝ)
:
theorem
ProbabilityTheory.mgf_mono_of_nonneg
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{Y : Ω → ℝ}
(hXY : X ≤ᵐ[μ] Y)
(ht : 0 ≤ t)
(htY : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * Y ω)) μ)
:
The moment generating function is monotone in the random variable for t ≥ 0
.
theorem
ProbabilityTheory.mgf_anti_of_nonpos
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{Y : Ω → ℝ}
(hXY : X ≤ᵐ[μ] Y)
(ht : t ≤ 0)
(htX : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
The moment generating function is antitone in the random variable for t ≤ 0
.
theorem
ProbabilityTheory.IndepFun.exp_mul
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(h_indep : IndepFun X Y μ)
(s t : ℝ)
:
This is a trivial application of IndepFun.comp
but it will come up frequently.
theorem
ProbabilityTheory.IndepFun.mgf_add
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X Y : Ω → ℝ}
(h_indep : IndepFun X Y μ)
(hX : MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
(hY : MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * Y ω)) μ)
:
theorem
ProbabilityTheory.IndepFun.mgf_add'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X Y : Ω → ℝ}
(h_indep : IndepFun X Y μ)
(hX : MeasureTheory.AEStronglyMeasurable X μ)
(hY : MeasureTheory.AEStronglyMeasurable Y μ)
:
theorem
ProbabilityTheory.IndepFun.cgf_add
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X Y : Ω → ℝ}
(h_indep : IndepFun X Y μ)
(h_int_X : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
(h_int_Y : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * Y ω)) μ)
:
theorem
ProbabilityTheory.aestronglyMeasurable_exp_mul_add
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X Y : Ω → ℝ}
(h_int_X : MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
(h_int_Y : MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * Y ω)) μ)
:
MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * (X + Y) ω)) μ
theorem
ProbabilityTheory.aestronglyMeasurable_exp_mul_sum
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X : ι → Ω → ℝ}
{s : Finset ι}
(h_int : ∀ i ∈ s, MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * X i ω)) μ)
:
MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * (∑ i ∈ s, X i) ω)) μ
theorem
ProbabilityTheory.IndepFun.integrable_exp_mul_add
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X Y : Ω → ℝ}
(h_indep : IndepFun X Y μ)
(h_int_X : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
(h_int_Y : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * Y ω)) μ)
:
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * (X + Y) ω)) μ
theorem
ProbabilityTheory.iIndepFun.integrable_exp_mul_sum
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
{X : ι → Ω → ℝ}
(h_indep : iIndepFun (fun (x : ι) => inferInstance) X μ)
(h_meas : ∀ (i : ι), Measurable (X i))
{s : Finset ι}
(h_int : ∀ i ∈ s, MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X i ω)) μ)
:
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * (∑ i ∈ s, X i) ω)) μ
theorem
ProbabilityTheory.iIndepFun.mgf_sum
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X : ι → Ω → ℝ}
(h_indep : iIndepFun (fun (x : ι) => inferInstance) X μ)
(h_meas : ∀ (i : ι), Measurable (X i))
(s : Finset ι)
:
theorem
ProbabilityTheory.iIndepFun.cgf_sum
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
{X : ι → Ω → ℝ}
(h_indep : iIndepFun (fun (x : ι) => inferInstance) X μ)
(h_meas : ∀ (i : ι), Measurable (X i))
{s : Finset ι}
(h_int : ∀ i ∈ s, MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X i ω)) μ)
:
theorem
ProbabilityTheory.mgf_congr_of_identDistrib
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
(X : Ω → ℝ)
{Ω' : Type u_3}
{m' : MeasurableSpace Ω'}
{μ' : MeasureTheory.Measure Ω'}
(X' : Ω' → ℝ)
(hident : IdentDistrib X X' μ μ')
(t : ℝ)
:
theorem
ProbabilityTheory.mgf_sum_of_identDistrib
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : ι → Ω → ℝ}
{s : Finset ι}
{j : ι}
(h_meas : ∀ (i : ι), Measurable (X i))
(h_indep : iIndepFun (fun (x : ι) => inferInstance) X μ)
(hident : ∀ i ∈ s, ∀ j ∈ s, IdentDistrib (X i) (X j) μ μ)
(hj : j ∈ s)
(t : ℝ)
:
theorem
ProbabilityTheory.measure_ge_le_exp_mul_mgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(ε : ℝ)
(ht : 0 ≤ t)
(h_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
Chernoff bound on the upper tail of a real random variable.
theorem
ProbabilityTheory.measure_le_le_exp_mul_mgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(ε : ℝ)
(ht : t ≤ 0)
(h_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
Chernoff bound on the lower tail of a real random variable.
theorem
ProbabilityTheory.measure_ge_le_exp_cgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(ε : ℝ)
(ht : 0 ≤ t)
(h_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
Chernoff bound on the upper tail of a real random variable.
theorem
ProbabilityTheory.measure_le_le_exp_cgf
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{t : ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(ε : ℝ)
(ht : t ≤ 0)
(h_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
Chernoff bound on the lower tail of a real random variable.
theorem
ProbabilityTheory.mgf_dirac
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{x : ℝ}
(hX : MeasureTheory.Measure.map X μ = MeasureTheory.Measure.dirac x)
(t : ℝ)
:
theorem
ProbabilityTheory.aemeasurable_exp_mul
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(t : ℝ)
(hX : AEMeasurable X μ)
:
MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => Real.exp (t * X ω)) μ
theorem
ProbabilityTheory.integrable_exp_mul_of_le
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X : Ω → ℝ}
(t b : ℝ)
(ht : 0 ≤ t)
(hX : AEMeasurable X μ)
(hb : ∀ᵐ (ω : Ω) ∂μ, X ω ≤ b)
:
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ