Results relating Measure.tilted
to mgf
and cgf
#
For a random variable X : Ω → ℝ
and a measure μ
, the tilted measure μ.tilted (t * X ·)
is
linked to the moment generating function (mgf
) and the cumulant generating function (cgf
)
of X
.
Main statements #
integral_tilted_mul_self
: the integral ofX
against the tilted measureμ.tilted (t * X ·)
is the first derivative of the cumulant generating function ofX
att
.(μ.tilted (t * X ·))[X] = deriv (cgf X μ) t
variance_tilted_mul
: the variance ofX
under the tilted measureμ.tilted (t * X ·)
is the second derivative of the cumulant generating function ofX
att
.Var[X; μ.tilted (t * X ·)] = iteratedDeriv 2 (cgf X μ) t
Apply lemmas for tilted
expressed with mgf
or cgf
. #
theorem
ProbabilityTheory.tilted_mul_apply_mgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{s : Set Ω}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.tilted_mul_apply_mgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
[MeasureTheory.SFinite μ]
(s : Set Ω)
:
theorem
ProbabilityTheory.tilted_mul_apply_cgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{s : Set Ω}
(hs : MeasurableSet s)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.tilted_mul_apply_cgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
[MeasureTheory.SFinite μ]
(s : Set Ω)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{s : Set Ω}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
[MeasureTheory.SFinite μ]
(s : Set Ω)
:
theorem
ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_cgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{s : Set Ω}
(hs : MeasurableSet s)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_cgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
[MeasureTheory.SFinite μ]
(s : Set Ω)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
Integral of tilted
expressed with mgf
or cgf
. #
theorem
ProbabilityTheory.setIntegral_tilted_mul_eq_mgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(g : Ω → E)
{s : Set Ω}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.setIntegral_tilted_mul_eq_mgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
(g : Ω → E)
(s : Set Ω)
:
theorem
ProbabilityTheory.setIntegral_tilted_mul_eq_cgf'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(g : Ω → E)
{s : Set Ω}
(hs : MeasurableSet s)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.setIntegral_tilted_mul_eq_cgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
(g : Ω → E)
(s : Set Ω)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.integral_tilted_mul_eq_mgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(g : Ω → E)
:
theorem
ProbabilityTheory.integral_tilted_mul_eq_cgf
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(g : Ω → E)
(ht : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ)
:
theorem
ProbabilityTheory.integral_tilted_mul_self
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
(ht : t ∈ interior (integrableExpSet X μ))
:
The integral of X
against the tilted measure μ.tilted (t * X ·)
is the first derivative of
the cumulant generating function of X
at t
.
theorem
ProbabilityTheory.memLp_tilted_mul
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
(ht : t ∈ interior (integrableExpSet X μ))
(p : NNReal)
:
MeasureTheory.MemLp X (↑p) (μ.tilted fun (x : Ω) => t * X x)
theorem
ProbabilityTheory.variance_tilted_mul
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{t : ℝ}
(ht : t ∈ interior (integrableExpSet X μ))
:
The variance of X
under the tilted measure μ.tilted (t * X ·)
is the second derivative of
the cumulant generating function of X
at t
.