Documentation

Mathlib.RepresentationTheory.Intertwining

Intertwining maps #

This file gives defines intertwining maps of representations (aka equivariant linear maps).

structure Representation.IsIntertwiningMap {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (f : V →ₗ[A] W) :

An unbundled version of IntertwiningMap.

  • isIntertwining (g : G) (v : V) : f ((ρ g) v) = (σ g) (f v)
Instances For
    theorem Representation.isIntertwiningMap_iff {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (f : V →ₗ[A] W) :
    ρ.IsIntertwiningMap σ f ∀ (g : G) (v : V), f ((ρ g) v) = (σ g) (f v)
    structure Representation.IntertwiningMap {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) extends V →ₗ[A] W :
    Type (max u_3 u_4)

    An intertwining map between two representations ρ and σ of the same monoid G is a map between underlying modules which commutes with the G-actions.

    Instances For
      theorem Representation.IntertwiningMap.ext_iff {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {inst✝ : CommRing A} {inst✝¹ : Monoid G} {inst✝² : AddCommMonoid V} {inst✝³ : AddCommMonoid W} {inst✝⁴ : Module A V} {inst✝⁵ : Module A W} {ρ : Representation A G V} {σ : Representation A G W} {x y : ρ.IntertwiningMap σ} :
      x = y x.toFun = y.toFun
      theorem Representation.IntertwiningMap.ext {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {inst✝ : CommRing A} {inst✝¹ : Monoid G} {inst✝² : AddCommMonoid V} {inst✝³ : AddCommMonoid W} {inst✝⁴ : Module A V} {inst✝⁵ : Module A W} {ρ : Representation A G V} {σ : Representation A G W} {x y : ρ.IntertwiningMap σ} (toFun : x.toFun = y.toFun) :
      x = y
      theorem Representation.IntertwiningMap.toLinearMap_injective {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      theorem Representation.IntertwiningMap.toFun_injective {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      instance Representation.IntertwiningMap.instFunLike {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      theorem Representation.IntertwiningMap.isIntertwining {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (f : ρ.IntertwiningMap σ) (g : G) (v : V) :
      f ((ρ g) v) = (σ g) (f v)
      @[simp]
      theorem Representation.IntertwiningMap.toLinearMap_apply {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (f : ρ.IntertwiningMap σ) (v : V) :
      f.toLinearMap v = f v
      instance Representation.IntertwiningMap.instZero {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      @[simp]
      theorem Representation.IntertwiningMap.coe_zero {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      0 = 0
      instance Representation.IntertwiningMap.instAdd {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      @[simp]
      theorem Representation.IntertwiningMap.coe_add {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (f g : ρ.IntertwiningMap σ) :
      ⇑(f + g) = f + g
      instance Representation.IntertwiningMap.instSMul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      @[simp]
      theorem Representation.IntertwiningMap.coe_smul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (a : A) (f : ρ.IntertwiningMap σ) :
      ⇑(a f) = a f
      instance Representation.IntertwiningMap.instSMulNat {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      @[simp]
      theorem Representation.IntertwiningMap.coe_nsmul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) (n : ) (f : ρ.IntertwiningMap σ) :
      ⇑(n f) = n f
      instance Representation.IntertwiningMap.instAddCommMonoid {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      Equations
      • One or more equations did not get rendered due to their size.
      def Representation.IntertwiningMap.coeFnAddMonoidHom {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
      ρ.IntertwiningMap σ →+ VW

      A coercion from intertwining maps to additive monoid homomorphisms.

      Equations
      Instances For
        instance Representation.IntertwiningMap.instModule {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (σ : Representation A G W) :
        Equations
        • One or more equations did not get rendered due to their size.

        An intertwining map is the same thing as a linear map over the group ring.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def Representation.IntertwiningMap.id {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :

          The identity map, considered as an intertwining map from a representation to itself.

          Equations
          Instances For
            @[simp]
            theorem Representation.IntertwiningMap.id_apply {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (v : V) :
            (id ρ) v = v
            theorem Representation.IntertwiningMap.isIntertwiningMap_of_mem_center {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (g : G) (hg : g Submonoid.center G) :
            ρ.IsIntertwiningMap ρ (ρ g)
            def Representation.IntertwiningMap.centralMul {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (g : G) (hg : g Submonoid.center G) :

            If g is a central element of a monoid G, then this is the action of g, considered as an intertwining map from any representation of G to itself.

            Equations
            Instances For