Intertwining maps #
This file gives defines intertwining maps of representations (aka equivariant linear maps).
structure
Representation.IsIntertwiningMap
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(f : V →ₗ[A] W)
:
An unbundled version of IntertwiningMap.
Instances For
theorem
Representation.isIntertwiningMap_iff
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(f : V →ₗ[A] W)
:
structure
Representation.IntertwiningMap
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
extends V →ₗ[A] W :
Type (max u_3 u_4)
An intertwining map between two representations ρ and σ of the same monoid G is a map
between underlying modules which commutes with the G-actions.
- toFun : V → W
An underlying
A-linear map of the underlyingA-modules.
Instances For
theorem
Representation.IntertwiningMap.ext_iff
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
{inst✝ : CommRing A}
{inst✝¹ : Monoid G}
{inst✝² : AddCommMonoid V}
{inst✝³ : AddCommMonoid W}
{inst✝⁴ : Module A V}
{inst✝⁵ : Module A W}
{ρ : Representation A G V}
{σ : Representation A G W}
{x y : ρ.IntertwiningMap σ}
:
theorem
Representation.IntertwiningMap.ext
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
{inst✝ : CommRing A}
{inst✝¹ : Monoid G}
{inst✝² : AddCommMonoid V}
{inst✝³ : AddCommMonoid W}
{inst✝⁴ : Module A V}
{inst✝⁵ : Module A W}
{ρ : Representation A G V}
{σ : Representation A G W}
{x y : ρ.IntertwiningMap σ}
(toFun : x.toFun = y.toFun)
:
theorem
Representation.IntertwiningMap.toLinearMap_injective
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
Function.Injective fun (f : ρ.IntertwiningMap σ) => f.toLinearMap
theorem
Representation.IntertwiningMap.toFun_injective
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
Function.Injective fun (f : ρ.IntertwiningMap σ) => f.toFun
instance
Representation.IntertwiningMap.instFunLike
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
FunLike (ρ.IntertwiningMap σ) V W
Equations
- Representation.IntertwiningMap.instFunLike ρ σ = { coe := fun (f : ρ.IntertwiningMap σ) => f.toFun, coe_injective' := ⋯ }
theorem
Representation.IntertwiningMap.isIntertwining
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(f : ρ.IntertwiningMap σ)
(g : G)
(v : V)
:
@[simp]
theorem
Representation.IntertwiningMap.toLinearMap_apply
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(f : ρ.IntertwiningMap σ)
(v : V)
:
instance
Representation.IntertwiningMap.instZero
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
Zero (ρ.IntertwiningMap σ)
@[simp]
theorem
Representation.IntertwiningMap.coe_zero
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
instance
Representation.IntertwiningMap.instAdd
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
Add (ρ.IntertwiningMap σ)
Equations
- Representation.IntertwiningMap.instAdd ρ σ = { add := fun (f g : ρ.IntertwiningMap σ) => { toLinearMap := f.toLinearMap + g.toLinearMap, isIntertwining' := ⋯ } }
@[simp]
theorem
Representation.IntertwiningMap.coe_add
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(f g : ρ.IntertwiningMap σ)
:
instance
Representation.IntertwiningMap.instSMul
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
SMul A (ρ.IntertwiningMap σ)
Equations
- Representation.IntertwiningMap.instSMul ρ σ = { smul := fun (a : A) (f : ρ.IntertwiningMap σ) => { toLinearMap := a • f.toLinearMap, isIntertwining' := ⋯ } }
@[simp]
theorem
Representation.IntertwiningMap.coe_smul
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(a : A)
(f : ρ.IntertwiningMap σ)
:
instance
Representation.IntertwiningMap.instSMulNat
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
SMul ℕ (ρ.IntertwiningMap σ)
Equations
- Representation.IntertwiningMap.instSMulNat ρ σ = { smul := fun (n : ℕ) (f : ρ.IntertwiningMap σ) => { toLinearMap := n • f.toLinearMap, isIntertwining' := ⋯ } }
@[simp]
theorem
Representation.IntertwiningMap.coe_nsmul
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
(n : ℕ)
(f : ρ.IntertwiningMap σ)
:
instance
Representation.IntertwiningMap.instAddCommMonoid
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
AddCommMonoid (ρ.IntertwiningMap σ)
Equations
- One or more equations did not get rendered due to their size.
def
Representation.IntertwiningMap.coeFnAddMonoidHom
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
A coercion from intertwining maps to additive monoid homomorphisms.
Equations
- Representation.IntertwiningMap.coeFnAddMonoidHom ρ σ = { toFun := DFunLike.coe, map_zero' := ⋯, map_add' := ⋯ }
Instances For
instance
Representation.IntertwiningMap.instModule
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
Module A (ρ.IntertwiningMap σ)
Equations
- One or more equations did not get rendered due to their size.
def
Representation.IntertwiningMap.equivLinearMapAsModule
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
{W : Type u_4}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[AddCommMonoid W]
[Module A V]
[Module A W]
(ρ : Representation A G V)
(σ : Representation A G W)
:
An intertwining map is the same thing as a linear map over the group ring.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Representation.IntertwiningMap.id
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[Module A V]
(ρ : Representation A G V)
:
ρ.IntertwiningMap ρ
The identity map, considered as an intertwining map from a representation to itself.
Equations
- Representation.IntertwiningMap.id ρ = { toLinearMap := LinearMap.id, isIntertwining' := ⋯ }
Instances For
@[simp]
theorem
Representation.IntertwiningMap.id_apply
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[Module A V]
(ρ : Representation A G V)
(v : V)
:
theorem
Representation.IntertwiningMap.isIntertwiningMap_of_mem_center
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[Module A V]
(ρ : Representation A G V)
(g : G)
(hg : g ∈ Submonoid.center G)
:
ρ.IsIntertwiningMap ρ (ρ g)
def
Representation.IntertwiningMap.centralMul
{A : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommRing A]
[Monoid G]
[AddCommMonoid V]
[Module A V]
(ρ : Representation A G V)
(g : G)
(hg : g ∈ Submonoid.center G)
:
ρ.IntertwiningMap ρ
If g is a central element of a monoid G, then this is the action of g, considered as an
intertwining map from any representation of G to itself.
Equations
- Representation.IntertwiningMap.centralMul ρ g hg = { toLinearMap := ρ g, isIntertwining' := ⋯ }