Subrepresentations #
This file defines subrepresentations of a monoid representation.
A subrepresentation of G of the A-module W is a submodule of W
which is stable under the G-action.
- toSubmodule : Submodule A W
A subrepresentation is a submodule.
Instances For
Equations
- Subrepresentation.instSetLike = { coe := fun (ρ' : Subrepresentation ρ) => ↑ρ'.toSubmodule, coe_injective' := ⋯ }
A subrepresentation is a representation.
Equations
- ρ'.toRepresentation = { toFun := fun (g : G) => (ρ g).restrict ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
Equations
- Subrepresentation.instMax = { max := fun (ρ₁ ρ₂ : Subrepresentation ρ) => { toSubmodule := ρ₁.toSubmodule ⊔ ρ₂.toSubmodule, apply_mem_toSubmodule := ⋯ } }
Equations
- Subrepresentation.instMin = { min := fun (ρ₁ ρ₂ : Subrepresentation ρ) => { toSubmodule := ρ₁.toSubmodule ⊓ ρ₂.toSubmodule, apply_mem_toSubmodule := ⋯ } }
A subrepresentation of ρ can be thought of as an A[G] submodule of ρ.asModule.
Equations
- σ.asSubmodule = { toAddSubmonoid := σ.toSubmodule.toAddSubmonoid, smul_mem' := ⋯ }
Instances For
A subrepresentation of ofModule M can be thought of as an A[G] submodule of M.
Equations
- σ.asSubmodule' = { toAddSubmonoid := σ.toSubmodule.toAddSubmonoid, smul_mem' := ⋯ }
Instances For
A submodule of an A[G]-module M can be thought of as a subrepresentation of ofModule M.
Equations
- Subrepresentation.ofSubmodule N = { toSubmodule := { toAddSubmonoid := N.toAddSubmonoid, smul_mem' := ⋯ }, apply_mem_toSubmodule := ⋯ }
Instances For
An A[G]-submodule of ρ.asModule can be thought of as a subrepresentation of ρ.
Equations
- Subrepresentation.ofSubmodule' N = { toSubmodule := { toAddSubmonoid := N.toAddSubmonoid, smul_mem' := ⋯ }, apply_mem_toSubmodule := ⋯ }
Instances For
An order-preserving equivalence between subrepresentations of ρ and submodules of
ρ.asModule.
Equations
- Subrepresentation.subrepresentationSubmoduleOrderIso = { toFun := Subrepresentation.asSubmodule, invFun := Subrepresentation.ofSubmodule', left_inv := ⋯, right_inv := ⋯, map_rel_iff' := ⋯ }
Instances For
An order-preserving equivalence between A[G]-submodules of an A[G]-module M and
subrepresentations of ρ.
Equations
- Subrepresentation.submoduleSubrepresentationOrderIso = { toFun := Subrepresentation.ofSubmodule, invFun := Subrepresentation.asSubmodule', left_inv := ⋯, right_inv := ⋯, map_rel_iff' := ⋯ }