Documentation

Mathlib.RepresentationTheory.Subrepresentation

Subrepresentations #

This file defines subrepresentations of a group representation.

structure Subrepresentation {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] (ρ : Representation A G W) :
Type u_3

A subrepresentation of G of the A-module W is a submodule of W which is stable under the G-action.

Instances For
    instance Subrepresentation.instSetLike {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
    Equations
    def Subrepresentation.toRepresentation {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ' : Subrepresentation ρ) :

    A subrepresentation is a representation.

    Equations
    Instances For
      instance Subrepresentation.instMax {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
      Equations
      instance Subrepresentation.instMin {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
      Equations
      @[simp]
      theorem Subrepresentation.coe_sup {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
      (ρ₁ρ₂) = ρ₁ + ρ₂
      @[simp]
      theorem Subrepresentation.coe_inf {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
      (ρ₁ρ₂) = ρ₁ ρ₂
      @[simp]
      theorem Subrepresentation.toSubmodule_sup {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
      (ρ₁ρ₂).toSubmodule = ρ₁.toSubmoduleρ₂.toSubmodule
      @[simp]
      theorem Subrepresentation.toSubmodule_inf {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
      (ρ₁ρ₂).toSubmodule = ρ₁.toSubmoduleρ₂.toSubmodule
      instance Subrepresentation.instBoundedOrder {A : Type u_1} [CommRing A] {G : Type u_2} [Group G] {W : Type u_3} [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
      Equations