Subrepresentations #
This file defines subrepresentations of a group representation.
structure
Subrepresentation
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
(ρ : Representation A G W)
:
Type u_3
A subrepresentation of G of the A-module W is a submodule of W
which is stable under the G-action.
- toSubmodule : Submodule A W
A subrepresentation is a submodule.
Instances For
theorem
Subrepresentation.toSubmodule_injective
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
:
instance
Subrepresentation.instSetLike
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
:
SetLike (Subrepresentation ρ) W
Equations
- Subrepresentation.instSetLike = { coe := fun (ρ' : Subrepresentation ρ) => ↑ρ'.toSubmodule, coe_injective' := ⋯ }
def
Subrepresentation.toRepresentation
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
(ρ' : Subrepresentation ρ)
:
Representation A G ↥ρ'.toSubmodule
A subrepresentation is a representation.
Equations
- ρ'.toRepresentation = { toFun := fun (g : G) => (ρ g).restrict ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
instance
Subrepresentation.instMax
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
:
Max (Subrepresentation ρ)
Equations
- Subrepresentation.instMax = { max := fun (ρ₁ ρ₂ : Subrepresentation ρ) => { toSubmodule := ρ₁.toSubmodule ⊔ ρ₂.toSubmodule, apply_mem_toSubmodule := ⋯ } }
instance
Subrepresentation.instMin
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
:
Min (Subrepresentation ρ)
Equations
- Subrepresentation.instMin = { min := fun (ρ₁ ρ₂ : Subrepresentation ρ) => { toSubmodule := ρ₁.toSubmodule ⊓ ρ₂.toSubmodule, apply_mem_toSubmodule := ⋯ } }
@[simp]
theorem
Subrepresentation.coe_sup
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
(ρ₁ ρ₂ : Subrepresentation ρ)
:
@[simp]
theorem
Subrepresentation.coe_inf
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
(ρ₁ ρ₂ : Subrepresentation ρ)
:
@[simp]
theorem
Subrepresentation.toSubmodule_sup
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
(ρ₁ ρ₂ : Subrepresentation ρ)
:
@[simp]
theorem
Subrepresentation.toSubmodule_inf
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
(ρ₁ ρ₂ : Subrepresentation ρ)
:
instance
Subrepresentation.instLattice
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
:
instance
Subrepresentation.instBoundedOrder
{A : Type u_1}
[CommRing A]
{G : Type u_2}
[Group G]
{W : Type u_3}
[AddCommMonoid W]
[Module A W]
{ρ : Representation A G W}
: