Some results on dimensions of algebra adjoin #
This file contains some results on dimensions of Algebra.adjoin
.
theorem
Subalgebra.rank_sup_le_of_free
{R : Type u}
{S : Type v}
[CommRing R]
[StrongRankCondition R]
[CommRing S]
[Algebra R S]
(A B : Subalgebra R S)
[Module.Free R ↥A]
[Module.Free R ↥B]
:
Module.rank R ↥(A ⊔ B) ≤ Module.rank R ↥A * Module.rank R ↥B
If A
and B
are subalgebras of a commutative R
-algebra S
, both of them are
free R
-algebras, then the rank of the rank of the subalgebra generated by A
and B
over R
is less than or equal to the product of that of A
and B
.
theorem
Subalgebra.finrank_sup_le_of_free
{R : Type u}
{S : Type v}
[CommRing R]
[StrongRankCondition R]
[CommRing S]
[Algebra R S]
(A B : Subalgebra R S)
[Module.Free R ↥A]
[Module.Free R ↥B]
:
Module.finrank R ↥(A ⊔ B) ≤ Module.finrank R ↥A * Module.finrank R ↥B
If A
and B
are subalgebras of a commutative R
-algebra S
, both of them are
free R
-algebras, then the Module.finrank
of the rank of the subalgebra generated by A
and B
over R
is less than or equal to the product of that of A
and B
.