Documentation

Mathlib.RingTheory.Algebraic.MvPolynomial

Transcendental elements in MvPolynomial #

This file lists some results on some elements in MvPolynomial σ R being transcendental over the base ring R and subrings MvPolynomial.supported of MvPolynomial σ R.

theorem MvPolynomial.transcendental_supported_polynomial_aeval_X {σ : Type u_1} (R : Type u_2) [CommRing R] {i : σ} {s : Set σ} (h : is) {f : Polynomial R} (hf : Transcendental R f) :
theorem MvPolynomial.transcendental_polynomial_aeval_X {σ : Type u_1} (R : Type u_2) [CommRing R] (i : σ) {f : Polynomial R} (hf : Transcendental R f) :
theorem MvPolynomial.transcendental_supported_polynomial_aeval_X_iff {σ : Type u_1} (R : Type u_2) [CommRing R] [Nontrivial R] {i : σ} {s : Set σ} {f : Polynomial R} :
theorem MvPolynomial.transcendental_supported_X {σ : Type u_1} (R : Type u_2) [CommRing R] {i : σ} {s : Set σ} (h : is) :
Transcendental (↥(supported R s)) (X i)
theorem MvPolynomial.transcendental_X {σ : Type u_1} (R : Type u_2) [CommRing R] (i : σ) :
theorem MvPolynomial.transcendental_supported_X_iff {σ : Type u_1} (R : Type u_2) [CommRing R] [Nontrivial R] {i : σ} {s : Set σ} :
Transcendental (↥(supported R s)) (X i) is