Transcendental elements in MvPolynomial
#
This file lists some results on some elements in MvPolynomial σ R
being transcendental
over the base ring R
and subrings MvPolynomial.supported
of MvPolynomial σ R
.
theorem
MvPolynomial.transcendental_supported_polynomial_aeval_X
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
{i : σ}
{s : Set σ}
(h : i ∉ s)
{f : Polynomial R}
(hf : Transcendental R f)
:
Transcendental (↥(supported R s)) ((Polynomial.aeval (X i)) f)
theorem
MvPolynomial.transcendental_polynomial_aeval_X
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
(i : σ)
{f : Polynomial R}
(hf : Transcendental R f)
:
Transcendental R ((Polynomial.aeval (X i)) f)
theorem
MvPolynomial.transcendental_polynomial_aeval_X_iff
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
(i : σ)
{f : Polynomial R}
:
Transcendental R ((Polynomial.aeval (X i)) f) ↔ Transcendental R f
theorem
MvPolynomial.transcendental_supported_polynomial_aeval_X_iff
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
[Nontrivial R]
{i : σ}
{s : Set σ}
{f : Polynomial R}
:
Transcendental (↥(supported R s)) ((Polynomial.aeval (X i)) f) ↔ i ∉ s ∧ Transcendental R f
theorem
MvPolynomial.transcendental_supported_X
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
{i : σ}
{s : Set σ}
(h : i ∉ s)
:
Transcendental (↥(supported R s)) (X i)
theorem
MvPolynomial.transcendental_X
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
(i : σ)
:
Transcendental R (X i)
theorem
MvPolynomial.transcendental_supported_X_iff
{σ : Type u_1}
(R : Type u_2)
[CommRing R]
[Nontrivial R]
{i : σ}
{s : Set σ}
:
Transcendental (↥(supported R s)) (X i) ↔ i ∉ s