Documentation

Mathlib.RingTheory.AlgebraicIndependent.AlgebraicClosure

Algebraic independence persists to the algebraic closure #

Main results #

theorem AlgebraicIndependent.extendScalars {ι : Type u_1} {R : Type u_2} {S : Type u_3} {A : Type u_4} {x : ιA} [CommRing R] [CommRing S] [CommRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [NoZeroDivisors S] (hx : AlgebraicIndependent R x) [alg : Algebra.IsAlgebraic R S] (inj : Function.Injective (algebraMap S A)) :
theorem AlgebraicIndependent.extendScalars_of_isSimpleRing {ι : Type u_1} {R : Type u_2} {S : Type u_3} {A : Type u_4} {x : ιA} [CommRing R] [CommRing S] [CommRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [NoZeroDivisors S] (hx : AlgebraicIndependent R x) [Algebra.IsAlgebraic R S] [IsSimpleRing S] :
theorem AlgebraicIndependent.extendScalars_of_isIntegral {ι : Type u_1} {R : Type u_2} {S : Type u_3} {A : Type u_4} {x : ιA} [CommRing R] [CommRing S] [CommRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [NoZeroDivisors S] (hx : AlgebraicIndependent R x) [Algebra.IsIntegral R S] (inj : Function.Injective (algebraMap S A)) :
theorem AlgebraicIndependent.subalgebra {ι : Type u_1} {R : Type u_2} {A : Type u_4} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (S : Subalgebra R A) [NoZeroDivisors A] [Algebra.IsAlgebraic R S] :
theorem AlgebraicIndependent.subalgebra_of_isIntegral {ι : Type u_1} {R : Type u_2} {A : Type u_4} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (S : Subalgebra R A) [NoZeroDivisors A] [Algebra.IsIntegral R S] :
theorem AlgebraicIndependent.integralClosure {ι : Type u_1} {R : Type u_2} {A : Type u_4} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [NoZeroDivisors A] :
theorem AlgebraicIndependent.algebraicClosure {ι : Type u_1} {F : Type u_5} {E : Type u_6} [Field F] [Field E] [Algebra F E] {x : ιE} (hx : AlgebraicIndependent F x) :