Documentation

Mathlib.RingTheory.AlgebraicIndependent.Transcendental

Algebraic Independence #

This file relates algebraic independence and transcendence (or algebraicity) of elements.

References #

Tags #

transcendence

@[simp]
theorem algebraicIndependent_unique_type_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Unique ι] :

A one-element family x is algebraically independent if and only if its element is transcendental.

theorem algebraicIndependent_singleton_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Subsingleton ι] (i : ι) :

The one-element family ![x] is algebraically independent if and only if x is transcendental.

theorem AlgebraicIndependent.transcendental {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (i : ι) :

If a family x is algebraically independent, then any of its element is transcendental.

theorem AlgebraicIndependent.isEmpty_of_isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Algebra.IsAlgebraic R A] :

If A/R is algebraic, then all algebraically independent families are empty.

theorem trdeg_eq_zero {R : Type u_3} {A : Type v} [CommRing R] [CommRing A] [Algebra R A] [Algebra.IsAlgebraic R A] :
theorem trdeg_pos (R : Type u_3) (A : Type v) [CommRing R] [CommRing A] [Algebra R A] [Algebra.Transcendental R A] :
theorem trdeg_eq_zero_iff {R : Type u_3} {A : Type v} [CommRing R] [CommRing A] [Algebra R A] :
theorem AlgebraicIndependent.option_iff_transcendental {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (a : A) :
(AlgebraicIndependent R fun (o : Option ι) => o.elim a x) Transcendental (↥(Algebra.adjoin R (Set.range x))) a
theorem AlgebraicIndependent.option_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {a : A} :
theorem AlgebraicIndepOn.insert_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {s : Set ι} {i : ι} (h : is) :
theorem AlgebraicIndepOn.insert {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {s : Set ι} {i : ι} (hs : AlgebraicIndepOn R x s) (hi : Transcendental (↥(Algebra.adjoin R (x '' s))) (x i)) :
theorem algebraicIndependent_of_set_of_finite {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (s : Set ι) (ind : AlgebraicIndependent R fun (i : s) => x i) (H : ∀ (t : Set ι), t.Finite(AlgebraicIndependent R fun (i : t) => x i)is, itTranscendental (↥(Algebra.adjoin R (x '' t))) (x i)) :
theorem algebraicIndependent_of_finite_type' {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hinj : Function.Injective (algebraMap R A)) (H : ∀ (t : Set ι), t.Finite(AlgebraicIndependent R fun (i : t) => x i)it, Transcendental (↥(Algebra.adjoin R (x '' t))) (x i)) :

Variant of algebraicIndependent_of_finite_type using Transcendental.

theorem algebraicIndependent_of_finite' {R : Type u_3} {A : Type v} [CommRing R] [CommRing A] [Algebra R A] (s : Set A) (hinj : Function.Injective (algebraMap R A)) (H : ts, t.FiniteAlgebraicIndependent R Subtype.valas, atTranscendental (↥(Algebra.adjoin R t)) a) :

Variant of algebraicIndependent_of_finite using Transcendental.

theorem AlgebraicIndependent.sumElim_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {ι' : Type u_4} {y : ι'A} :
theorem AlgebraicIndependent.iff_adjoin_image {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (s : Set ι) :
AlgebraicIndependent R x (AlgebraicIndependent R fun (i : s) => x i) AlgebraicIndepOn (↥(Algebra.adjoin R (x '' s))) x s
theorem AlgebraicIndependent.iff_adjoin_image_compl {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (s : Set ι) :
AlgebraicIndependent R x (AlgebraicIndependent R fun (i : s) => x i) AlgebraicIndepOn (↥(Algebra.adjoin R (x '' s))) x s
theorem AlgebraicIndependent.iff_transcendental_adjoin_image {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (i : ι) :
AlgebraicIndependent R x (AlgebraicIndependent R fun (j : { j : ι // j i }) => x j) Transcendental (↥(Algebra.adjoin R (x '' {i}))) (x i)
theorem AlgebraicIndependent.sumElim {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {ι' : Type u_4} {y : ι'A} (hy : AlgebraicIndependent (↥(Algebra.adjoin R (Set.range x))) y) :
theorem AlgebraicIndependent.sumElim_of_tower {ι : Type u_1} {R : Type u_3} {S : Type u} {A : Type v} {x : ιA} [CommRing R] [CommRing S] [CommRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (hx : AlgebraicIndependent R x) {ι' : Type u_4} {y : ι'A} (hxS : Set.range x Set.range (algebraMap S A)) (hy : AlgebraicIndependent S y) :
theorem AlgebraicIndependent.sumElim_comp {ι : Type u_1} {R : Type u_3} {S : Type u} {A : Type v} [CommRing R] [CommRing S] [CommRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι' : Type u_4} {x : ιS} {y : ι'A} (hx : AlgebraicIndependent R x) (hy : AlgebraicIndependent S y) :
theorem AlgebraicIndependent.adjoin_of_disjoint {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {s t : Set ι} (h : Disjoint s t) :
AlgebraicIndependent (Algebra.adjoin R (x '' s)) fun (i : t) => x i
theorem AlgebraicIndependent.adjoin_iff_disjoint {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Nontrivial A] {s t : Set ι} :
(AlgebraicIndependent (Algebra.adjoin R (x '' s)) fun (i : t) => x i) Disjoint s t
theorem AlgebraicIndependent.transcendental_adjoin {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {s : Set ι} {i : ι} (hi : is) :
Transcendental (↥(Algebra.adjoin R (x '' s))) (x i)
theorem AlgebraicIndependent.transcendental_adjoin_iff {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Nontrivial A] {s : Set ι} {i : ι} :
Transcendental (↥(Algebra.adjoin R (x '' s))) (x i) is
theorem trdeg_add_le {R : Type u_3} {S : Type u} [CommRing R] [CommRing S] [Algebra R S] [Nontrivial R] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [FaithfulSMul R S] [FaithfulSMul S A] [IsScalarTower R S A] :
theorem MvPolynomial.algebraicIndependent_polynomial_aeval_X {ι : Type u_1} {R : Type u_3} [CommRing R] (f : ιPolynomial R) (hf : ∀ (i : ι), Transcendental R (f i)) :
AlgebraicIndependent R fun (i : ι) => (Polynomial.aeval (X i)) (f i)

If for each i : ι, f_i : R[X] is transcendental over R, then {f_i(X_i) | i : ι} in MvPolynomial ι R is algebraically independent over R.

theorem AlgebraicIndependent.polynomial_aeval_of_transcendental {ι : Type u_1} {R : Type u_3} {A : Type v} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {f : ιPolynomial R} (hf : ∀ (i : ι), Transcendental R (f i)) :
AlgebraicIndependent R fun (i : ι) => (Polynomial.aeval (x i)) (f i)

If {x_i : A | i : ι} is algebraically independent over R, and for each i, f_i : R[X] is transcendental over R, then {f_i(x_i) | i : ι} is also algebraically independent over R.