The conductor ideal #
This file defines the conductor ideal of an element x
of R
-algebra S
. This is the ideal of
S
consisting of all elements a
such that for all b
in S
, the product a * b
lies in the
R
subalgebra of S
generated by x
.
theorem
mem_coeSubmodule_conductor
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{L : Type u_3}
[CommRing L]
[Algebra S L]
[Algebra R L]
[IsScalarTower R S L]
[NoZeroSMulDivisors S L]
{x : S}
{y : L}
:
y ∈ IsLocalization.coeSubmodule L (conductor R x) ↔ ∀ (z : S), y * (algebraMap S L) z ∈ Algebra.adjoin R {(algebraMap S L) x}
theorem
prod_mem_ideal_map_of_mem_conductor
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
{I : Ideal R}
{p : R}
{z : S}
(hp : p ∈ Ideal.comap (algebraMap R S) (conductor R x))
(hz' : z ∈ Ideal.map (algebraMap R S) I)
:
(algebraMap R S) p * z ∈ ⇑(algebraMap (↥(Algebra.adjoin R {x})) S) '' ↑(Ideal.map (algebraMap R ↥(Algebra.adjoin R {x})) I)
This technical lemma tell us that if C
is the conductor of R<x>
and I
is an ideal of R
then p * (I * S) ⊆ I * R<x>
for any p
in C ∩ R
theorem
comap_map_eq_map_adjoin_of_coprime_conductor
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
{I : Ideal R}
(hx : Ideal.comap (algebraMap R S) (conductor R x) ⊔ I = ⊤)
(h_alg : Function.Injective ⇑(algebraMap (↥(Algebra.adjoin R {x})) S))
:
Ideal.comap (algebraMap (↥(Algebra.adjoin R {x})) S) (Ideal.map (algebraMap R S) I) = Ideal.map (algebraMap R ↥(Algebra.adjoin R {x})) I
A technical result telling us that (I * S) ∩ R<x> = I * R<x>
for any ideal I
of R
.
noncomputable def
quotAdjoinEquivQuotMap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
{I : Ideal R}
(hx : Ideal.comap (algebraMap R S) (conductor R x) ⊔ I = ⊤)
(h_alg : Function.Injective ⇑(algebraMap (↥(Algebra.adjoin R {x})) S))
:
↥(Algebra.adjoin R {x}) ⧸ Ideal.map (algebraMap R ↥(Algebra.adjoin R {x})) I ≃+* S ⧸ Ideal.map (algebraMap R S) I
The canonical morphism of rings from R<x> ⧸ (I*R<x>)
to S ⧸ (I*S)
is an isomorphism
when I
and (conductor R x) ∩ R
are coprime.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
quotAdjoinEquivQuotMap_apply_mk
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
{I : Ideal R}
(hx : Ideal.comap (algebraMap R S) (conductor R x) ⊔ I = ⊤)
(h_alg : Function.Injective ⇑(algebraMap (↥(Algebra.adjoin R {x})) S))
(a : ↥(Algebra.adjoin R {x}))
:
(quotAdjoinEquivQuotMap hx h_alg) ((Ideal.Quotient.mk (Ideal.map (algebraMap R ↥(Algebra.adjoin R {x})) I)) a) = (Ideal.Quotient.mk (Ideal.map (algebraMap R S) I)) ↑a