Documentation

Mathlib.RingTheory.Conductor

The conductor ideal #

This file defines the conductor ideal of an element x of R-algebra S. This is the ideal of S consisting of all elements a such that for all b in S, the product a * b lies in the Rsubalgebra of S generated by x.

def conductor (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (x : S) :

Let S / R be a ring extension and x : S, then the conductor of R<x> is the biggest ideal of S contained in R<x>.

Equations
Instances For
    theorem conductor_eq_of_eq {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x y : S} (h : (Algebra.adjoin R {x}) = (Algebra.adjoin R {y})) :
    theorem conductor_subset_adjoin {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} :
    (conductor R x) (Algebra.adjoin R {x})
    theorem mem_conductor_iff {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x y : S} :
    y conductor R x ∀ (b : S), y * b Algebra.adjoin R {x}
    theorem conductor_eq_top_of_adjoin_eq_top {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} (h : Algebra.adjoin R {x} = ) :
    theorem conductor_eq_top_of_powerBasis {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (pb : PowerBasis R S) :
    theorem adjoin_eq_top_of_conductor_eq_top {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} (h : conductor R x = ) :
    theorem mem_coeSubmodule_conductor {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {L : Type u_3} [CommRing L] [Algebra S L] [Algebra R L] [IsScalarTower R S L] [NoZeroSMulDivisors S L] {x : S} {y : L} :
    theorem prod_mem_ideal_map_of_mem_conductor {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} {I : Ideal R} {p : R} {z : S} (hp : p Ideal.comap (algebraMap R S) (conductor R x)) (hz' : z Ideal.map (algebraMap R S) I) :
    (algebraMap R S) p * z (algebraMap (↥(Algebra.adjoin R {x})) S) '' (Ideal.map (algebraMap R (Algebra.adjoin R {x})) I)

    This technical lemma tell us that if C is the conductor of R<x> and I is an ideal of R then p * (I * S) ⊆ I * R<x> for any p in C ∩ R

    theorem comap_map_eq_map_adjoin_of_coprime_conductor {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} {I : Ideal R} (hx : Ideal.comap (algebraMap R S) (conductor R x)I = ) (h_alg : Function.Injective (algebraMap (↥(Algebra.adjoin R {x})) S)) :

    A technical result telling us that (I * S) ∩ R<x> = I * R<x> for any ideal I of R.

    noncomputable def quotAdjoinEquivQuotMap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} {I : Ideal R} (hx : Ideal.comap (algebraMap R S) (conductor R x)I = ) (h_alg : Function.Injective (algebraMap (↥(Algebra.adjoin R {x})) S)) :

    The canonical morphism of rings from R<x> ⧸ (I*R<x>) to S ⧸ (I*S) is an isomorphism when I and (conductor R x) ∩ R are coprime.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem quotAdjoinEquivQuotMap_apply_mk {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {x : S} {I : Ideal R} (hx : Ideal.comap (algebraMap R S) (conductor R x)I = ) (h_alg : Function.Injective (algebraMap (↥(Algebra.adjoin R {x})) S)) (a : (Algebra.adjoin R {x})) :