Documentation
Mathlib
.
RingTheory
.
Finiteness
.
Nilpotent
Search
return to top
source
Imports
Init
Mathlib.RingTheory.Finiteness.Defs
Mathlib.RingTheory.Nilpotent.Defs
Imported by
Module
.
Finite
.
Module
.
End
.
isNilpotent_iff_of_finite
Nilpotent maps on finite modules
#
source
theorem
Module
.
Finite
.
Module
.
End
.
isNilpotent_iff_of_finite
{R :
Type
u_1}
{M :
Type
u_2}
[
CommSemiring
R
]
[
AddCommMonoid
M
]
[
Module
R
M
]
[
Module.Finite
R
M
]
{f :
End
R
M
}
:
IsNilpotent
f
↔
∀ (
m
:
M
),
∃ (
n
:
ℕ
),
(
f
^
n
)
m
=
0