Nilpotent maps on finite modules #
theorem
Module.Finite.Module.End.isNilpotent_iff_of_finite
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
{f : Module.End R M}
:
IsNilpotent f ↔ ∀ (m : M), ∃ (n : ℕ), (f ^ n) m = 0