Documentation

Mathlib.RingTheory.Finiteness.Subalgebra

Subalgebras that are finitely generated as submodules #

theorem Subalgebra.fg_bot_toSubmodule {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
(Subalgebra.toSubmodule ).FG
instance Subalgebra.finite_bot {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
theorem Submodule.fg_unit {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (I : (Submodule R A)ˣ) :
(↑I).FG
theorem Submodule.fg_of_isUnit {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {I : Submodule R A} (hI : IsUnit I) :
I.FG
theorem Submodule.FG.mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {M N : Submodule R A} (hm : M.FG) (hn : N.FG) :
(M * N).FG
theorem Submodule.FG.pow {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {M : Submodule R A} (h : M.FG) (n : ) :
(M ^ n).FG