This file contains a proof that the radical of any homogeneous ideal is a homogeneous ideal
Main statements #
Ideal.IsHomogeneous.isPrime_iff
: for anyI : Ideal A
, ifI
is homogeneous, thenI
is prime if and only ifI
is homogeneously prime, i.e.I ≠ ⊤
and ifx, y
are homogeneous elements such thatx * y ∈ I
, then at least one ofx,y
is inI
.Ideal.IsPrime.homogeneousCore
: for anyI : Ideal A
, ifI
is prime, thenI.homogeneous_core 𝒜
(i.e. the largest homogeneous ideal contained inI
) is also prime.Ideal.IsHomogeneous.radical
: for anyI : Ideal A
, ifI
is homogeneous, then the radical ofI
is homogeneous as well.HomogeneousIdeal.radical
: for anyI : HomogeneousIdeal 𝒜
,I.radical
is the radical ofI
as aHomogeneousIdeal 𝒜
.
Implementation details #
Throughout this file, the indexing type ι
of grading is assumed to be a
LinearOrderedCancelAddCommMonoid
. This might be stronger than necessary but cancelling
property is strictly necessary; for a counterexample of how Ideal.IsHomogeneous.isPrime_iff
fails for a non-cancellative set see Counterexamples/HomogeneousPrimeNotPrime.lean
.
Tags #
homogeneous, radical
theorem
Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
{I : Ideal A}
(hI : IsHomogeneous 𝒜 I)
(I_ne_top : I ≠ ⊤)
(homogeneous_mem_or_mem : ∀ {x y : A}, SetLike.Homogeneous 𝒜 x → SetLike.Homogeneous 𝒜 y → x * y ∈ I → x ∈ I ∨ y ∈ I)
:
I.IsPrime
theorem
Ideal.IsHomogeneous.isPrime_iff
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
{I : Ideal A}
(h : IsHomogeneous 𝒜 I)
:
theorem
Ideal.IsPrime.homogeneousCore
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
{I : Ideal A}
(h : I.IsPrime)
:
(Ideal.homogeneousCore 𝒜 I).toIdeal.IsPrime
theorem
Ideal.IsHomogeneous.radical_eq
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
{I : Ideal A}
(hI : IsHomogeneous 𝒜 I)
:
I.radical = InfSet.sInf {J : Ideal A | IsHomogeneous 𝒜 J ∧ I ≤ J ∧ J.IsPrime}
theorem
Ideal.IsHomogeneous.radical
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
{I : Ideal A}
(h : IsHomogeneous 𝒜 I)
:
IsHomogeneous 𝒜 I.radical
def
HomogeneousIdeal.radical
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
(I : HomogeneousIdeal 𝒜)
:
The radical of a homogeneous ideal, as another homogeneous ideal.
Equations
- I.radical = { toSubmodule := I.toIdeal.radical, is_homogeneous' := ⋯ }
Instances For
@[simp]
theorem
HomogeneousIdeal.coe_radical
{ι : Type u_1}
{σ : Type u_2}
{A : Type u_3}
[CommRing A]
[LinearOrderedCancelAddCommMonoid ι]
[SetLike σ A]
[AddSubmonoidClass σ A]
{𝒜 : ι → σ}
[GradedRing 𝒜]
(I : HomogeneousIdeal 𝒜)
:
I.radical.toIdeal = I.toIdeal.radical