Binomial expansions of powers of Hahn Series #
We introduce binomial expansions using embDomain.
Main Definitions #
HahnSeries.binomialFamily
Main results #
- coefficients of powers of binomials
def
HahnSeries.SummableFamily.binomialFamily
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
(x : HahnSeries Γ A)
(r : R)
:
SummableFamily Γ A ℕ
A summable family of Hahn series, whose nth term is Ring.choose r n • (x - 1) ^ n when
x is close to 1 (more precisely, when 0 < (x - 1).orderTop), and 0 ^ n otherwise. These
terms give a formal expansion of x ^ r as (1 + (x - 1)) ^ r.
Equations
Instances For
@[simp]
theorem
HahnSeries.SummableFamily.binomialFamily_apply
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
{x : HahnSeries Γ A}
(hx : 0 < (x - 1).orderTop)
(r : R)
(n : ℕ)
:
@[simp]
theorem
HahnSeries.SummableFamily.binomialFamily_apply_of_orderTop_nonpos
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
{x : HahnSeries Γ A}
(hx : ¬0 < (x - 1).orderTop)
(r : R)
(n : ℕ)
:
theorem
HahnSeries.SummableFamily.binomialFamily_orderTop_pos
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
{x : HahnSeries Γ A}
(hx : 0 < (x - 1).orderTop)
(r : R)
{n : ℕ}
(hn : 0 < n)
:
theorem
HahnSeries.SummableFamily.binomialFamily_mem_support
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
{x : HahnSeries Γ A}
(hx : 0 < (x - 1).orderTop)
(r : R)
(n : ℕ)
{g : Γ}
(hg : g ∈ ((binomialFamily x r) n).support)
:
theorem
HahnSeries.SummableFamily.orderTop_hsum_binomialFamily_pos
{Γ : Type u_1}
{R : Type u_2}
{A : Type u_3}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
[CommRing A]
[Algebra R A]
{x : HahnSeries Γ A}
(hx : 0 < (x - 1).orderTop)
(r : R)
:
instance
HahnSeries.instPowSubtypeUnitsMemSubgroupOrderTopSubOnePos
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
:
Pow (↥(orderTopSubOnePos Γ R)) R
Equations
- HahnSeries.instPowSubtypeUnitsMemSubgroupOrderTopSubOnePos = { pow := fun (x : ↥(HahnSeries.orderTopSubOnePos Γ R)) (r : R) => HahnSeries.toOrderTopSubOnePos ⋯ }
@[simp]
theorem
HahnSeries.binomial_power
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
{x : ↥(orderTopSubOnePos Γ R)}
{r : R}
:
theorem
HahnSeries.pow_add
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
{x : ↥(orderTopSubOnePos Γ R)}
{r s : R}
:
theorem
HahnSeries.coeff_toOrderTopSubOnePos_pow
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[AddCommMonoid Γ]
[IsOrderedCancelAddMonoid Γ]
[CommRing R]
[BinomialRing R]
{g : Γ}
(hg : 0 < g)
(r s : R)
(k : ℕ)
: