Documentation

Mathlib.RingTheory.HahnSeries.Binomial

Binomial expansions of powers of Hahn Series #

We introduce binomial expansions using embDomain.

Main Definitions #

Main results #

A summable family of Hahn series, whose nth term is Ring.choose r n • (x - 1) ^ n when x is close to 1 (more precisely, when 0 < (x - 1).orderTop), and 0 ^ n otherwise. These terms give a formal expansion of x ^ r as (1 + (x - 1)) ^ r.

Equations
Instances For
    @[simp]
    theorem HahnSeries.SummableFamily.binomialFamily_apply {Γ : Type u_1} {R : Type u_2} {A : Type u_3} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] [CommRing A] [Algebra R A] {x : HahnSeries Γ A} (hx : 0 < (x - 1).orderTop) (r : R) (n : ) :
    (binomialFamily x r) n = Ring.choose r n (x - 1) ^ n
    @[simp]
    theorem HahnSeries.SummableFamily.binomialFamily_apply_of_orderTop_nonpos {Γ : Type u_1} {R : Type u_2} {A : Type u_3} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] [CommRing A] [Algebra R A] {x : HahnSeries Γ A} (hx : ¬0 < (x - 1).orderTop) (r : R) (n : ) :
    (binomialFamily x r) n = 0 ^ n
    theorem HahnSeries.SummableFamily.binomialFamily_orderTop_pos {Γ : Type u_1} {R : Type u_2} {A : Type u_3} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] [CommRing A] [Algebra R A] {x : HahnSeries Γ A} (hx : 0 < (x - 1).orderTop) (r : R) {n : } (hn : 0 < n) :
    theorem HahnSeries.SummableFamily.binomialFamily_mem_support {Γ : Type u_1} {R : Type u_2} {A : Type u_3} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] [CommRing A] [Algebra R A] {x : HahnSeries Γ A} (hx : 0 < (x - 1).orderTop) (r : R) (n : ) {g : Γ} (hg : g ((binomialFamily x r) n).support) :
    0 g
    theorem HahnSeries.SummableFamily.orderTop_hsum_binomialFamily_pos {Γ : Type u_1} {R : Type u_2} {A : Type u_3} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] [CommRing A] [Algebra R A] {x : HahnSeries Γ A} (hx : 0 < (x - 1).orderTop) (r : R) :
    @[simp]
    theorem HahnSeries.binomial_power {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] {x : (orderTopSubOnePos Γ R)} {r : R} :
    theorem HahnSeries.pow_add {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] {x : (orderTopSubOnePos Γ R)} {r s : R} :
    x ^ (r + s) = x ^ r * x ^ s
    theorem HahnSeries.coeff_toOrderTopSubOnePos_pow {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [AddCommMonoid Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] [BinomialRing R] {g : Γ} (hg : 0 < g) (r s : R) (k : ) :
    (↑↑(toOrderTopSubOnePos ^ s)).coeff (k g) = Ring.choose s k r ^ k