A summable family given by a power series #
Main Definitions #
HahnSeries.SummableFamily.powerSeriesFamily
: A summable family of Hahn series whose elements are non-negative powers of a fixed positive-order Hahn series multiplied by the coefficients of a formal power series.PowerSeries.heval
: TheR
-algebra homomorphism fromPowerSeries σ R
toHahnSeries Γ R
that takesX
to a fixed positive-order Hahn Series and extends to formal infinite sums.
TODO #
MvPowerSeries.heval
: AnR
-algebra homomorphism fromMvPowerSeries σ R
toHahnSeries Γ R
(for finite σ) taking eachX i
to a positive order Hahn Series.
@[reducible, inline]
abbrev
HahnSeries.SummableFamily.powerSeriesFamily
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
:
SummableFamily Γ V ℕ
A summable family given by scalar multiples of powers of a positive order Hahn series.
The scalar multiples are given by the coefficients of a power series.
Equations
- HahnSeries.SummableFamily.powerSeriesFamily hx f = HahnSeries.SummableFamily.smulFamily (fun (n : ℕ) => (PowerSeries.coeff R n) f) (HahnSeries.SummableFamily.powers x hx)
Instances For
@[simp]
theorem
HahnSeries.SummableFamily.powerSeriesFamily_apply
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
(n : ℕ)
:
theorem
HahnSeries.SummableFamily.powerSeriesFamily_add
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(f g : PowerSeries R)
:
theorem
HahnSeries.SummableFamily.powerSeriesFamily_smul
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
(r : R)
:
theorem
HahnSeries.SummableFamily.support_powerSeriesFamily_subset
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(a b : PowerSeries R)
(g : Γ)
:
((powerSeriesFamily hx (a * b)).coeff g).support ⊆ Finset.image (fun (i : ℕ × ℕ) => i.1 + i.2) (((powerSeriesFamily hx a).mul (powerSeriesFamily hx b)).coeff g).support
theorem
HahnSeries.SummableFamily.hsum_powerSeriesFamily_mul
{Γ : Type u_1}
{R : Type u_3}
{V : Type u_4}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
[CommRing V]
[Algebra R V]
{x : HahnSeries Γ V}
(hx : 0 < x.orderTop)
(a b : PowerSeries R)
:
def
PowerSeries.heval
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
:
The R
-algebra homomorphism from R[[X]]
to HahnSeries Γ R
given by sending the power series
variable X
to a positive order element x
and extending to infinite sums.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
PowerSeries.heval_apply
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
:
theorem
PowerSeries.heval_mul
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
{a b : PowerSeries R}
:
theorem
PowerSeries.heval_unit
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
(u : (PowerSeries R)ˣ)
:
theorem
PowerSeries.coeff_heval
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
(g : Γ)
:
theorem
PowerSeries.coeff_heval_zero
{Γ : Type u_1}
{R : Type u_3}
[LinearOrderedCancelAddCommMonoid Γ]
[CommRing R]
{x : HahnSeries Γ R}
(hx : 0 < x.orderTop)
(f : PowerSeries R)
: