Documentation

Mathlib.RingTheory.HahnSeries.HEval

A summable family given by a power series #

Main Definitions #

TODO #

@[reducible, inline]
abbrev HahnSeries.SummableFamily.powerSeriesFamily {Γ : Type u_1} {R : Type u_3} {V : Type u_4} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] [CommRing V] [Algebra R V] {x : HahnSeries Γ V} (hx : 0 < x.orderTop) (f : PowerSeries R) :

A summable family given by scalar multiples of powers of a positive order Hahn series.

The scalar multiples are given by the coefficients of a power series.

Equations
Instances For
    @[simp]
    theorem HahnSeries.SummableFamily.powerSeriesFamily_apply {Γ : Type u_1} {R : Type u_3} {V : Type u_4} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] [CommRing V] [Algebra R V] {x : HahnSeries Γ V} (hx : 0 < x.orderTop) (f : PowerSeries R) (n : ) :
    theorem HahnSeries.SummableFamily.support_powerSeriesFamily_subset {Γ : Type u_1} {R : Type u_3} {V : Type u_4} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] [CommRing V] [Algebra R V] {x : HahnSeries Γ V} (hx : 0 < x.orderTop) (a b : PowerSeries R) (g : Γ) :
    ((powerSeriesFamily hx (a * b)).coeff g).support Finset.image (fun (i : × ) => i.1 + i.2) (((powerSeriesFamily hx a).mul (powerSeriesFamily hx b)).coeff g).support

    The R-algebra homomorphism from R[[X]] to HahnSeries Γ R given by sending the power series variable X to a positive order element x and extending to infinite sums.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem PowerSeries.heval_mul {Γ : Type u_1} {R : Type u_3} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) {a b : PowerSeries R} :
      (heval hx) (a * b) = (heval hx) a * (heval hx) b
      theorem PowerSeries.heval_unit {Γ : Type u_1} {R : Type u_3} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (u : (PowerSeries R)ˣ) :
      IsUnit ((heval hx) u)
      theorem PowerSeries.coeff_heval {Γ : Type u_1} {R : Type u_3} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (f : PowerSeries R) (g : Γ) :
      theorem PowerSeries.coeff_heval_zero {Γ : Type u_1} {R : Type u_3} [LinearOrderedCancelAddCommMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (f : PowerSeries R) :
      ((heval hx) f).coeff 0 = (constantCoeff R) f