Hahn embedding theorem #
In this file, we prove the Hahn embedding theorem: every linearly ordered abelian group
can be embedded as an ordered subgroup of Lex (HahnSeries Ω ℝ)
, where Ω
is the finite
Archimedean classes of the group. The theorem is stated as hahnEmbedding_isOrderedAddMonoid
.
References #
instance
instNonemptySeedRatReal
(M : Type u_1)
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
[Module ℚ M]
[IsOrderedModule ℚ M]
:
Nonempty (HahnEmbedding.Seed ℚ M ℝ)
theorem
hahnEmbedding_isOrderedModule_rat
(M : Type u_1)
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
[Module ℚ M]
[IsOrderedModule ℚ M]
:
∃ (f : M →ₗ[ℚ] Lex (HahnSeries (FiniteArchimedeanClass M) ℝ)),
StrictMono ⇑f ∧ ∀ (a : M), ArchimedeanClass.mk a = (FiniteArchimedeanClass.withTopOrderIso M) (ofLex (f a)).orderTop
theorem
hahnEmbedding_isOrderedAddMonoid
(M : Type u_1)
[AddCommGroup M]
[LinearOrder M]
[IsOrderedAddMonoid M]
:
∃ (f : M →+o Lex (HahnSeries (FiniteArchimedeanClass M) ℝ)),
Function.Injective ⇑f ∧ ∀ (a : M), ArchimedeanClass.mk a = (FiniteArchimedeanClass.withTopOrderIso M) (ofLex (f a)).orderTop
Hahn embedding theorem
For a linearly ordered additive group M
, there exists an injective OrderAddMonoidHom
from M
to
Lex (HahnSeries (FiniteArchimedeanClass M) ℝ)
that sends each a : M
to an element of the
a
-Archimedean class of the Hahn series.