Assocaited primes of localized module #
This file mainly proof the relation between Ass(S⁻¹M)
and Ass(M)
Main Results #
associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule
: for anR
moduleM
, ifp
is a prime ideal ofS⁻¹R
andp ∩ R ∈ Ass(M)
thenp ∈ Ass (S⁻¹M)
.
TODO: prove the reverse when p
is finitely generated and
get Ass (S⁻¹M) = Ass(M) ∩ Spec(S⁻¹R)
when R
noetherian.
TODO: deduce from the above that every minimal element in support is in Ass(M)
.
theorem
Module.associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule
{R : Type u_1}
[CommRing R]
(S : Submonoid R)
(R' : Type u_2)
[CommRing R']
[Algebra R R']
[IsLocalization S R']
{M : Type u_3}
{M' : Type u_4}
[AddCommGroup M]
[Module R M]
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
[IsLocalizedModule S f]
[Module R' M']
[IsScalarTower R R' M']
(p : Ideal R')
[p.IsPrime]
(ass : Ideal.comap (algebraMap R R') p ∈ associatedPrimes R M)
:
theorem
Module.associatedPrimes.mem_associatePrimes_localizedModule_atPrime_of_mem_associated_primes
{R : Type u_1}
[CommRing R]
{M : Type u_3}
[AddCommGroup M]
[Module R M]
{p : Ideal R}
[p.IsPrime]
(ass : p ∈ associatedPrimes R M)
: