Documentation

Mathlib.RingTheory.Ideal.AssociatedPrime.Localization

Assocaited primes of localized module #

This file mainly proof the relation between Ass(S⁻¹M) and Ass(M)

Main Results #

TODO: prove the reverse when p is finitely generated and get Ass (S⁻¹M) = Ass(M) ∩ Spec(S⁻¹R) when R noetherian.

TODO: deduce from the above that every minimal element in support is in Ass(M).

theorem Module.associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule {R : Type u_1} [CommRing R] (S : Submonoid R) (R' : Type u_2) [CommRing R'] [Algebra R R'] [IsLocalization S R'] {M : Type u_3} {M' : Type u_4} [AddCommGroup M] [Module R M] [AddCommGroup M'] [Module R M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] [Module R' M'] [IsScalarTower R R' M'] (p : Ideal R') [p.IsPrime] (ass : Ideal.comap (algebraMap R R') p associatedPrimes R M) :