Documentation

Mathlib.RingTheory.Ideal.AssociatedPrime.Localization

Associated primes of localized module #

This file mainly proves the relation between Ass(S⁻¹M) and Ass(M)

Main Results #

@[deprecated Module.associatedPrimes.mem_associatedPrimes_of_comap_mem_associatedPrimes_of_isLocalizedModule (since := "2025-08-15")]
theorem Module.associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule {R : Type u_1} [CommRing R] (S : Submonoid R) {R' : Type u_2} [CommRing R'] [Algebra R R'] [IsLocalization S R'] {M : Type u_3} {M' : Type u_4} [AddCommGroup M] [Module R M] [AddCommGroup M'] [Module R M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] [Module R' M'] [IsScalarTower R R' M'] (p : Ideal R') (ass : Ideal.comap (algebraMap R R') p associatedPrimes R M) :

Alias of Module.associatedPrimes.mem_associatedPrimes_of_comap_mem_associatedPrimes_of_isLocalizedModule.


Stacks Tag 0310 ((1))