Associated primes of localized module #
This file mainly proves the relation between Ass(S⁻¹M) and Ass(M)
Main Results #
associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule: for anRmoduleM, ifpis a prime ideal ofS⁻¹Randp ∩ R ∈ Ass(M)thenp ∈ Ass (S⁻¹M).
theorem
Module.associatedPrimes.mem_associatedPrimes_of_comap_mem_associatedPrimes_of_isLocalizedModule
{R : Type u_1}
[CommRing R]
(S : Submonoid R)
{R' : Type u_2}
[CommRing R']
[Algebra R R']
[IsLocalization S R']
{M : Type u_3}
{M' : Type u_4}
[AddCommGroup M]
[Module R M]
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
[IsLocalizedModule S f]
[Module R' M']
[IsScalarTower R R' M']
(p : Ideal R')
(ass : Ideal.comap (algebraMap R R') p ∈ associatedPrimes R M)
:
Stacks Tag 0310 ((1))
@[deprecated Module.associatedPrimes.mem_associatedPrimes_of_comap_mem_associatedPrimes_of_isLocalizedModule (since := "2025-08-15")]
theorem
Module.associatedPrimes.mem_associatePrimes_of_comap_mem_associatePrimes_isLocalizedModule
{R : Type u_1}
[CommRing R]
(S : Submonoid R)
{R' : Type u_2}
[CommRing R']
[Algebra R R']
[IsLocalization S R']
{M : Type u_3}
{M' : Type u_4}
[AddCommGroup M]
[Module R M]
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
[IsLocalizedModule S f]
[Module R' M']
[IsScalarTower R R' M']
(p : Ideal R')
(ass : Ideal.comap (algebraMap R R') p ∈ associatedPrimes R M)
:
Alias of Module.associatedPrimes.mem_associatedPrimes_of_comap_mem_associatedPrimes_of_isLocalizedModule.
Stacks Tag 0310 ((1))
theorem
Module.associatedPrimes.mem_associatedPrimes_atPrime_of_mem_associatedPrimes
{R : Type u_1}
[CommRing R]
{M : Type u_3}
[AddCommGroup M]
[Module R M]
{p : Ideal R}
[p.IsPrime]
(ass : p ∈ associatedPrimes R M)
:
@[deprecated Module.associatedPrimes.mem_associatedPrimes_atPrime_of_mem_associatedPrimes (since := "2025-11-27")]
theorem
Module.associatedPrimes.mem_associatePrimes_localizedModule_atPrime_of_mem_associated_primes
{R : Type u_1}
[CommRing R]
{M : Type u_3}
[AddCommGroup M]
[Module R M]
{p : Ideal R}
[p.IsPrime]
(ass : p ∈ associatedPrimes R M)
:
Alias of Module.associatedPrimes.mem_associatedPrimes_atPrime_of_mem_associatedPrimes.
theorem
Module.associatedPrimes.comap_mem_associatedPrimes_of_mem_associatedPrimes_of_isLocalizedModule_of_fg
{R : Type u_1}
[CommRing R]
(S : Submonoid R)
{R' : Type u_2}
[CommRing R']
[Algebra R R']
[IsLocalization S R']
{M : Type u_3}
{M' : Type u_4}
[AddCommGroup M]
[Module R M]
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
[IsLocalizedModule S f]
[Module R' M']
[IsScalarTower R R' M']
(p : Ideal R')
(ass : p ∈ associatedPrimes R' M')
(fg : (Ideal.comap (algebraMap R R') p).FG)
:
Stacks Tag 0310 ((2))
theorem
Module.associatedPrimes.preimage_comap_associatedPrimes_eq_associatedPrimes_of_isLocalizedModule
{R : Type u_1}
[CommRing R]
(S : Submonoid R)
(R' : Type u_2)
[CommRing R']
[Algebra R R']
[IsLocalization S R']
{M : Type u_3}
{M' : Type u_4}
[AddCommGroup M]
[Module R M]
[AddCommGroup M']
[Module R M']
(f : M →ₗ[R] M')
[IsLocalizedModule S f]
[Module R' M']
[IsScalarTower R R' M']
[IsNoetherianRing R]
:
Stacks Tag 0310 ((3))
theorem
Module.associatedPrimes.minimalPrimes_annihilator_subset_associatedPrimes
(R : Type u_1)
[CommRing R]
(M : Type u_3)
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
[Module.Finite R M]
: