Local subrings of fields #
Main result #
LocalSubring
: The class of local subrings of a commutative ring.LocalSubring.ofPrime
: The localization of a subring as aLocalSubring
.
instance
instIsLocalRingSubtypeMemSubringMapOfNontrivial
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R →+* S)
(s : Subring R)
[IsLocalRing ↥s]
:
IsLocalRing ↥(Subring.map f s)
The class of local subrings of a commutative ring.
- toSubring : Subring R
The underlying subring of a local subring.
- isLocalRing : IsLocalRing ↥self.toSubring
Instances For
theorem
LocalSubring.ext
{R : Type u_1}
{inst✝ : CommRing R}
{x y : LocalSubring R}
(toSubring : x.toSubring = y.toSubring)
:
x = y
theorem
LocalSubring.toSubring_injective
{R : Type u_1}
[CommRing R]
:
Function.Injective LocalSubring.toSubring
def
LocalSubring.copy
{R : Type u_1}
[CommRing R]
(S : LocalSubring R)
(s : Set R)
(hs : s = ↑S.toSubring)
:
Copy of a local subring with a new carrier
equal to the old one.
Useful to fix definitional equalities.
Equations
- S.copy s hs = LocalSubring.mk (S.toSubring.copy s hs)
Instances For
def
LocalSubring.map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R →+* S)
(s : LocalSubring R)
:
The image of a LocalSubring
as a LocalSubring
.
Equations
- LocalSubring.map f s = LocalSubring.mk (Subring.map f s.toSubring)
Instances For
@[simp]
theorem
LocalSubring.map_toSubring
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Nontrivial S]
(f : R →+* S)
(s : LocalSubring R)
:
(LocalSubring.map f s).toSubring = Subring.map f s.toSubring
def
LocalSubring.range
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[IsLocalRing R]
[Nontrivial S]
(f : R →+* S)
:
The range of a ringhom from a local ring as a LocalSubring
.
Equations
- LocalSubring.range f = (LocalSubring.map f (LocalSubring.mk ⊤)).copy ↑f.range ⋯
Instances For
@[simp]
theorem
LocalSubring.range_toSubring
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[IsLocalRing R]
[Nontrivial S]
(f : R →+* S)
:
(LocalSubring.range f).toSubring = (Subring.map f ⊤).copy (Set.range ⇑f) ⋯
The domination order on local subrings.
A
dominates B
if and only if B ≤ A
(as subrings) and m_A ∩ B = m_B
.
Equations
- LocalSubring.instPartialOrder = PartialOrder.mk ⋯
theorem
LocalSubring.le_def
{R : Type u_1}
[CommRing R]
{A B : LocalSubring R}
:
A ≤ B ↔ ∃ (h : A.toSubring ≤ B.toSubring), IsLocalHom (Subring.inclusion h)
A
dominates B
if and only if B ≤ A
(as subrings) and m_A ∩ B = m_B
.
noncomputable def
LocalSubring.ofPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
The localization of a subring at a prime, as a local subring.
Also see Localization.subalgebra.ofField
Equations
Instances For
theorem
LocalSubring.le_ofPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
A ≤ (LocalSubring.ofPrime A P).toSubring
noncomputable instance
LocalSubring.instAlgebraSubtypeMemSubringToSubringOfPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
Algebra ↥A ↥(LocalSubring.ofPrime A P).toSubring
Equations
- LocalSubring.instAlgebraSubtypeMemSubringToSubringOfPrime A P = (Subring.inclusion ⋯).toAlgebra
instance
LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
IsScalarTower (↥A) (↥(LocalSubring.ofPrime A P).toSubring) K
noncomputable def
LocalSubring.ofPrimeEquiv
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
Localization.AtPrime P ≃ₐ[↥A] ↥(LocalSubring.ofPrime A P).toSubring
The localization of a subring at a prime is indeed isomorphic to its abstract localization.
Equations
Instances For
instance
LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime
{K : Type u_3}
[Field K]
(A : Subring K)
(P : Ideal ↥A)
[P.IsPrime]
:
IsLocalization.AtPrime (↥(LocalSubring.ofPrime A P).toSubring) P