Morita Equivalece between R and Mₙ(R) #
Main definitions #
ModuleCat.toMatrixModCat: The functor fromMod-RtoMod-Mₙ(R)induced byLinearMap.mapMatrixModuleandMatrix.Module.matrixModule.
TODO (Edison) #
- Prove
RandMₙ(R)are morita-equivalent.
def
ModuleCat.toMatrixModCat
(R : Type u_1)
(ι : Type u_2)
[Ring R]
[Fintype ι]
[DecidableEq ι]
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat (Matrix ι ι R))
The functor from Mod-R to Mod-Mₙ(R) induced by LinearMap.mapModule and
Matrix.matrixModule.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.toMatrixModCat_map
(R : Type u_1)
(ι : Type u_2)
[Ring R]
[Fintype ι]
[DecidableEq ι]
{X✝ Y✝ : ModuleCat R}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
ModuleCat.toMatrixModCat_obj_isAddCommGroup
(R : Type u_1)
(ι : Type u_2)
[Ring R]
[Fintype ι]
[DecidableEq ι]
(M : ModuleCat R)
:
@[simp]
theorem
ModuleCat.toMatrixModCat_obj_carrier
(R : Type u_1)
(ι : Type u_2)
[Ring R]
[Fintype ι]
[DecidableEq ι]
(M : ModuleCat R)
:
@[simp]
theorem
ModuleCat.toMatrixModCat_obj_isModule
(R : Type u_1)
(ι : Type u_2)
[Ring R]
[Fintype ι]
[DecidableEq ι]
(M : ModuleCat R)
: