Documentation

Mathlib.RingTheory.MvPolynomial.MonomialOrder.DegLex

Some lemmas about the degree lexicographic monomial order on multivariate polynomials #

theorem MvPolynomial.totalDegree_mul_of_isDomain {σ : Type u_1} {R : Type u_2} [CommSemiring R] {f g : MvPolynomial σ R} [NoZeroDivisors R] (hf : f 0) (hg : g 0) :
theorem MvPolynomial.totalDegree_le_of_dvd_of_isDomain {σ : Type u_1} {R : Type u_2} [CommSemiring R] {f g : MvPolynomial σ R} [NoZeroDivisors R] (h : f g) (hg : g 0) :
theorem MvPolynomial.dvd_C_iff_exists {σ : Type u_1} {R : Type u_2} [CommSemiring R] {f : MvPolynomial σ R} [NoZeroDivisors R] {a : R} (ha : a 0) :
f C a ∃ (b : R), b a f = C b
theorem MvPolynomial.dvd_monomial_iff_exists {σ : Type u_1} {R : Type u_2} [CommRing R] [NoZeroDivisors R] {p : MvPolynomial σ R} {n : σ →₀ } {a : R} (ha : a 0) :
p (monomial n) a ∃ (m : σ →₀ ) (b : R), m n b a p = (monomial m) b
theorem MvPolynomial.dvd_monomial_one_iff_exists {σ : Type u_1} {R : Type u_2} [CommRing R] [NoZeroDivisors R] {p : MvPolynomial σ R} {n : σ →₀ } :
p (monomial n) 1 ∃ (m : σ →₀ ) (u : R), m n IsUnit u p = (monomial m) u
theorem MvPolynomial.dvd_X_iff_exists {σ : Type u_1} {R : Type u_2} [CommRing R] [NoZeroDivisors R] {p : MvPolynomial σ R} {i : σ} :
p X i ∃ (r : R), IsUnit r (p = C r p = r X i)