Documentation

Mathlib.RingTheory.MvPowerSeries.Trunc

Formal (multivariate) power series - Truncation #

MvPowerSeries.trunc n φ truncates a formal multivariate power series to the multivariate polynomial that has the same coefficients as φ, for all m < n, and 0 otherwise.

Note that here, m and n have types σ →₀ ℕ, so that m < n means that m ≠ n and m s ≤ n s for all s : σ.

def MvPowerSeries.truncFun {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n : σ →₀ ) (φ : MvPowerSeries σ R) :

Auxiliary definition for the truncation function.

Equations
Instances For
    theorem MvPowerSeries.coeff_truncFun {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
    MvPolynomial.coeff m (truncFun n φ) = if m < n then (coeff R m) φ else 0
    def MvPowerSeries.trunc {σ : Type u_1} (R : Type u_2) [CommSemiring R] (n : σ →₀ ) :

    The nth truncation of a multivariate formal power series to a multivariate polynomial

    Equations
    Instances For
      theorem MvPowerSeries.coeff_trunc {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
      MvPolynomial.coeff m ((trunc R n) φ) = if m < n then (coeff R m) φ else 0
      @[simp]
      theorem MvPowerSeries.trunc_one {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n : σ →₀ ) (hnn : n 0) :
      (trunc R n) 1 = 1
      @[simp]
      theorem MvPowerSeries.trunc_c {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n : σ →₀ ) (hnn : n 0) (a : R) :
      (trunc R n) ((C σ R) a) = MvPolynomial.C a
      @[simp]
      theorem MvPowerSeries.trunc_C_mul {σ : Type u_1} {R : Type u_2} [CommSemiring R] (n : σ →₀ ) (a : R) (p : MvPowerSeries σ R) :
      (trunc R n) ((C σ R) a * p) = MvPolynomial.C a * (trunc R n) p
      @[simp]
      theorem MvPowerSeries.trunc_map {σ : Type u_1} {R : Type u_2} {S : Type u_3} [CommSemiring R] [CommSemiring S] (n : σ →₀ ) (f : R →+* S) (p : MvPowerSeries σ R) :
      (trunc S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc R n) p)