Formal (multivariate) power series - Truncation #
MvPowerSeries.trunc n φ
truncates a formal multivariate power series
to the multivariate polynomial that has the same coefficients as φ
,
for all m < n
, and 0
otherwise.
Note that here, m
and n
have types σ →₀ ℕ
,
so that m < n
means that m ≠ n
and m s ≤ n s
for all s : σ
.
def
MvPowerSeries.truncFun
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : σ →₀ ℕ)
(φ : MvPowerSeries σ R)
:
MvPolynomial σ R
Auxiliary definition for the truncation function.
Equations
- MvPowerSeries.truncFun n φ = ∑ m ∈ Finset.Iio n, (MvPolynomial.monomial m) ((MvPowerSeries.coeff R m) φ)
Instances For
theorem
MvPowerSeries.coeff_truncFun
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n m : σ →₀ ℕ)
(φ : MvPowerSeries σ R)
:
MvPolynomial.coeff m (truncFun n φ) = if m < n then (coeff R m) φ else 0
def
MvPowerSeries.trunc
{σ : Type u_1}
(R : Type u_2)
[CommSemiring R]
(n : σ →₀ ℕ)
:
MvPowerSeries σ R →+ MvPolynomial σ R
The n
th truncation of a multivariate formal power series to a multivariate polynomial
Equations
- MvPowerSeries.trunc R n = { toFun := MvPowerSeries.truncFun n, map_zero' := ⋯, map_add' := ⋯ }
Instances For
theorem
MvPowerSeries.coeff_trunc
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n m : σ →₀ ℕ)
(φ : MvPowerSeries σ R)
:
MvPolynomial.coeff m ((trunc R n) φ) = if m < n then (coeff R m) φ else 0
@[simp]
theorem
MvPowerSeries.trunc_one
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : σ →₀ ℕ)
(hnn : n ≠ 0)
:
@[simp]
theorem
MvPowerSeries.trunc_C_mul
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(n : σ →₀ ℕ)
(a : R)
(p : MvPowerSeries σ R)
:
@[simp]
theorem
MvPowerSeries.trunc_map
{σ : Type u_1}
{R : Type u_2}
{S : Type u_3}
[CommSemiring R]
[CommSemiring S]
(n : σ →₀ ℕ)
(f : R →+* S)
(p : MvPowerSeries σ R)
:
(trunc S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc R n) p)