Wronskian of a pair of polynomial #
This file defines Wronskian of a pair of polynomials, which is W(a, b) = ab' - a'b
.
We also prove basic properties of it.
Main declarations #
Polynomial.wronskian_eq_of_sum_zero
: We haveW(a, b) = W(b, c)
whena + b + c = 0
.Polynomial.degree_wronskian_lt_add
: Degree of WronskianW(a, b)
is strictly smaller than the sum of degrees ofa
andb
Polynomial.natDegree_wronskian_lt_add
:natDegree
version of the above theorem. We need to assume that the Wronskian is nonzero. (Otherwise,a = b = 1
gives a counterexample.)
TODO #
- Define Wronskian for n-tuple of polynomials, not necessarily two.
Wronskian of a pair of polynomials, W(a, b) = ab' - a'b
.
Instances For
def
Polynomial.wronskianBilin
(R : Type u_1)
[CommRing R]
:
Polynomial R →ₗ[R] Polynomial R →ₗ[R] Polynomial R
Polynomial.wronskian
as a bilinear map.
Equations
- Polynomial.wronskianBilin R = (LinearMap.mul R (Polynomial R)).compl₂ Polynomial.derivative - LinearMap.mul R (Polynomial R) ∘ₗ Polynomial.derivative
Instances For
@[simp]
theorem
Polynomial.wronskianBilin_apply
{R : Type u_1}
[CommRing R]
(a b : Polynomial R)
:
((Polynomial.wronskianBilin R) a) b = a.wronskian b
@[simp]
theorem
Polynomial.wronskian_zero_left
{R : Type u_1}
[CommRing R]
(a : Polynomial R)
:
Polynomial.wronskian 0 a = 0
@[simp]
theorem
Polynomial.wronskian_zero_right
{R : Type u_1}
[CommRing R]
(a : Polynomial R)
:
a.wronskian 0 = 0
theorem
Polynomial.wronskian_self_eq_zero
{R : Type u_1}
[CommRing R]
(a : Polynomial R)
:
a.wronskian a = 0
theorem
Polynomial.isAlt_wronskianBilin
{R : Type u_1}
[CommRing R]
:
(Polynomial.wronskianBilin R).IsAlt
theorem
Polynomial.wronskian_eq_of_sum_zero
{R : Type u_1}
[CommRing R]
{a b c : Polynomial R}
(hAdd : a + b + c = 0)
:
a.wronskian b = b.wronskian c
theorem
Polynomial.degree_wronskian_lt_add
{R : Type u_1}
[CommRing R]
{a b : Polynomial R}
(ha : a ≠ 0)
(hb : b ≠ 0)
:
Degree of W(a,b)
is strictly less than the sum of degrees of a
and b
(both nonzero).
theorem
Polynomial.natDegree_wronskian_lt_add
{R : Type u_1}
[CommRing R]
{a b : Polynomial R}
(hw : a.wronskian b ≠ 0)
:
natDegree
version of the above theorem.
Note this would be false with just (ha : a ≠ 0) (hb : b ≠ 0), as when
a = b = 1we have
(wronskian a b).natDegree = a.natDegree = b.natDegree = 0`.
theorem
IsCoprime.wronskian_eq_zero_iff
{R : Type u_1}
[CommRing R]
[NoZeroDivisors R]
{a b : Polynomial R}
(hc : IsCoprime a b)
:
For coprime polynomials a
and b
, their Wronskian is zero
if and only if their derivatives are zeros.
@[deprecated IsCoprime.wronskian_eq_zero_iff]
theorem
Polynomial.IsCoprime.wronskian_eq_zero_iff
{R : Type u_1}
[CommRing R]
[NoZeroDivisors R]
{a b : Polynomial R}
(hc : IsCoprime a b)
:
Alias of IsCoprime.wronskian_eq_zero_iff
.
For coprime polynomials a
and b
, their Wronskian is zero
if and only if their derivatives are zeros.