Etale ring homomorphisms #
We show the meta properties of étale morphisms.
A ring hom R →+* S
is etale, if S
is an etale R
-algebra.
Equations
- f.Etale = Algebra.Etale R S
Instances For
theorem
RingHom.Etale.toAlgebra
{R S : Type u}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.Etale)
:
Algebra.Etale R S
Helper lemma for the algebraize
tactic
theorem
RingHom.Etale.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale
theorem
RingHom.Etale.propertyIsLocal :
PropertyIsLocal fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale
theorem
RingHom.Etale.respectsIso :
RespectsIso fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale
theorem
RingHom.Etale.ofLocalizationSpanTarget :
OfLocalizationSpanTarget fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale
theorem
RingHom.Etale.ofLocalizationSpan :
OfLocalizationSpan fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale
theorem
RingHom.Etale.stableUnderComposition :
StableUnderComposition fun {R S : Type u_1} [CommRing R] [CommRing S] => Etale